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Abstract

Climate change is rapidly altering snow conditions worldwide and northern regions experiencing particularly
significant impacts. As these regions warm faster than the global average, understanding snow distribution and its
15 properties at both global and local scales is critical for effective water resource management and environmental
protection. While satellite data and point measurements provide valuable information for snow research and models,
they are often insufficient for capturing local-scale variability. To address this gap, we integrated UAV LiDAR with
daily reference measurements, snow course measurements and machine learning (ML) approach. By using ML
clustering, we generated high-resolution (1 m) snow depth and snow water equivalent (SWE) maps for two study areas
20 in northern Finland. Data were collected in four different field campaigns during the 2023-2024 winter season. The
results indicate that snow distribution in the study areas can be classified into three distinct categories based on land
cover: forested areas, transition zones with bushes, and open areas namely peatlands, each showing different snow
accumulation and ablation dynamics. Cluster-based modelled SWE values for the snow courses gave good overall
accuracy, with RMSE values of 31-36 mm. Compared to snow course measurements, the cluster-based model
25  approach enhances the spatial and temporal coverage of continuous SWE estimates, offering valuable insights into
local snow patterns in the different sites. Our study highlights the influence of forests and forest gaps on snow
accumulation and melt processes, emphasizing their role in shaping snow distribution patterns across different
landscape types in arctic boreal zone. The results improve boreal snow monitoring and water resource management
and offer new tools and high-resolution spatiotemporal data for local stakeholders working with hydrological
30  forecasting and climate adaptation and supporting satellite-based observations.
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1 Introduction

Snow is an important part of the hydrological cycle and highly relevant for societies and ecosystems, especially in
35 high latitude and mountainous regions. Snow cover, the timing and distribution influences directly on climate energy
budget through snow albedo (Callaghan et al., 2011; Li et al., 2018), ecosystems and habitats including species and
vegetation distribution (Thiebault & Young, 2020), biogeochemical processes in soils and seasonal ground frost (Ala-
Aho et al., 2021; Croghan et al., 2023; Jan & Painter, 2020). Additionally, snow resources have a major impact on
catchment, river and groundwater water budgets and seasonal distribution (Meri6 et al., 2019). Snow-covered areas
40  are decreasing as global temperatures rise, leading to a consistent decline in snow water equivalent (SWE) (Colombo
et al., 2022; Faquseh & Grossi, 2024; Kunkel et al., 2016; Réisanen, 2023; Y. Zhang & Ma, 2018). A recent study by
Gottlieb & Mankin (2024) shows that snowpack has decreased in half of the Northern Hemisphere river basins and
the declines are highly related to human actions. The timing and amount of snowmelt, along with the SWE during the
melting period, are crucial for local water balance and floods (i.e., Bavay et al., 2013; Callaghan et al., 2011; Wang et
45 al., 2016). Changes in snow conditions and rising temperatures are causing earlier flood peaks in snowmelt-dominated

1



https://doi.org/10.5194/egusphere-2025-1297
Preprint. Discussion started: 5 May 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

catchments with a decline in streamflow later in the year (Berghuijs & Hale, 2025; Engelhardt et al., 2014; Matti et
al., 2017). Snowmelt significantly influences near-surface hydrological effects (Muhic et al., 2023) and soil moisture
in these regions (Okkonen et al., 2017).

50 Snow models are an important part of water resource planning and prediction. These models provide estimations of
snow related hydrological parameters for areas and times where ground observations are not available and can be used
for creating various scenarios. However, accurate prediction of snow-water resources, snow models require high-
resolution data as input, testing and validation. Satellite based remote sensing is still rather a coarse resolution and has
limited accuracy with canopy cover (Muhuri et al., 2021; Rittger et al., 2020). Thus ground-based manual

55 measurements for feeding operational models are still conducted. The snow course network provides important data
for models and serve as a long-term historical dataset; however, they are time-consuming, the accuracy varies
(Beaudoin-Galaise & Jutras, 2022; Kuusisto, 1984; Mustonen, 1965), and temporal resolution is weeks to month.
Thus, it is not ideal for capturing peak snow depth or melt-out dates (Malek et al., 2020).

60 To bridge the knowledge and technical gap between remote and ground observations, uncrewed aerial vehicles (UAV)
have been proven to be efficient in the snow depth and SWE estimations with decent cost and accuracy (e.g., (Adams
et al., 2018; Niedzielski et al., 2018; Rauhala et al., 2023). Like satellite platforms, also UAV systems can carry both
optical and radar-based sensors and provide high resolution spatial information. Photogrammetry, including RGB and
stereo-imagery, can result in centimeter-scale accuracy in snow depth mapping over catchment scale and has relatively

65 low cost compared to radars like ground-penetrating radar (GPR) and light detection and ranging (LiDAR) (Maier et
al., 2022; Nolan et al., 2015; Rauhala et al., 2023). However, photogrammetry-based products, like structure-from-
motion (SfM), have limitations in lighting conditions and dense vegetation, and the decision between cost-
effectiveness and accuracy is dependent on the site characteristics (Rauhala et al., 2023; Rogers et al., 2020). Recently
LiDAR sensors have got more affordable, compact and lightweight. Technical advancements, such as improved

70 inertial measurement unit (IMUs) and global navigation satellite systems (GNSS), have enhanced their accuracy and
performance, making LiDAR more cost-effective and competitive compared to UAV photogrammetry (Bhardwaj et
al., 2016; Rogers et al., 2020). The UAV LiDAR technology potentially offers high accuracy over large spatial areas
and allows catchment-scale mapping also even under canopy cover, unaffected by overcast conditions or shadows
(Dharmadasa et al., 2022; Harder et al., 2020; Jacobs et al., 2021; Mazzotti et al., 2019). LiDAR based snow depth

75 data can also be used to estimate the spatial distribution of SWE in landscape scale in a decent cost-effectiveness
(Broxton et al., 2019; Geissler et al., 2023).

Snow conditions are mostly controlled by temperature and precipitation (Mudryk et al., 2020; Mudryk et al., 2017),
and changes in global and local climate trends impact snow cover differently across regions. However, local snow
80  accumulation is dependent on-site characteristics, such as topography, vegetation, and weather and wind distribution
(Currier & Lundquist, 2018; Mazzotti et al., 2019, 2023). Forest structure significantly affects snow accumulation
(Mazzotti et al., 2023) and SWE values for forested areas appear significantly higher than in tundra and shrub tundra
zones (Busseau et al., 2017; Dharmadasa et al., 2023). The effect of forest structure to snow melt also depends on the
climate, as in cold regions, snow lasts longer in forests than in forest openings, whereas in warm climates, it stays
85 longer in forest clearings (Lundquist et al., 2013). Additionally, snowpack characteristics are spatially different in
forest gaps (Bouchard et al., 2022) and edges (Currier et al., 2022; Mazzotti et al., 2019). Vegetation changes, such as
the northward retreat of the tree line, densification of existing vegetation and migration of new species towards the
poles, will also affect snow dynamics and its effects are not yet fully known (Aakala et al., 2014; Franke et al., 2017;
Grace et al., 2002; Ropars & Boudreau, 2012). For better understanding of snow processes, we need improved tools
90 and approaches, especially with localized high resolution spatial data.

Even though annual changes in snow cover are dominated by the weather conditions, different patterns, “clusters”, of
snow distribution and melting can be detected (Currier et al., 2022; Geissler et al., 2023; Matiu et al., 2021). These

snow distribution clusters are site-specific and dictated by the local site characteristics, and importantly they can be
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95 extended to different years (Pflug & Lundquist, 2020; Sturm & Wagner, 2010). Revuelto et al. (2020) successfully
modeled daily snow depth maps using in-situ measurements and time-lapse photographs, and collected field data from
two winters was estimated to be enough for the random forest model to estimate snow depth for other years. Repetitive
UAV surveys over the winter season can similarly provide spatial information of snow cover, helping to identify
factors affecting snow distribution. Different machine learning approaches have shown promising results in snow

100  depth and SWE mapping for different regions (J. Zhang et al., 2021), as they can reduce biases and enhance overall
accuracy (King et al., 2020; Vafakhah et al., 2022), but uncertainties and challenges call for more testing in different
conditions (Meloche et al., 2022; Revuelto et al., 2020). Especially, the accurate definition of SWE from snow depth
clusters still presents challenges (Geissler et al., 2023).

105 Our study produces spatial daily snow depth and SWE estimates in different sites based on a combination of LIiDAR-
based snow depth maps, snow course measurements and continuous snow depth measurements. The field data was
collected during winter 2023-24 from two different sites in the Finnish Lapland, each with long-term monitoring
infrastructure and existing snow course measurements, representing different vegetational and topographical
conditions typical for the boreal and sub-arctic landscapes. In this study, we investigate the ability of UAV LiDAR

110 method to map snow depth in forested boreal and sub-arctic sites across northern Finland. We discuss how snow-
depth clusters and characteristics derived from machine learning could be used to improve SWE estimates in our study
sites in substantially higher spatial and temporal resolution compared to traditional operational snow course
measurements. We also evaluate the output of the LiDAR-based snow clustering and model SWE estimates and
compare them to the snow course measurements in each site.

115 2 Data and methods
2.1 Study areas

Three study areas were chosen to present different environmental conditions of the Finnish Lapland and sub-arctic

and boreal zone, namely Pallas (Fig. 1a), Sodankyl& (Fig. 1b). All sites have on-going snow course measurements

operated by the Finnish Environment Institute (SYKE), at least one ultrasonic snow depth sensor together with weather
120 station operated by the Finnish Meteorological institute (FMI) and all data is open access (Sect. 2.2.4).

Pallas (67°59° N, 24° 14’ E) is the northernmost among the study sites and located the highest from the sea level. The
land cover is mostly coniferous forests (63%), with mires and mixed forests (Table 1). Pallas mean total annual
precipitation is 644 mm, and mean wintertime precipitation of 233 mm, mean annual temperature 0.5 °C and mean

125  wintertime temperature -7.0 °C. It has an average of the highest snow depths compared to the other sites. Sodankyla
is located the middle part of Lapland (67° 21' N, 26° 37' E), the land cover is mainly mire (63%) and the elevation
range is low (Table 1). Sodankyl4 site is in the FMI research station, which has daily weather observations since 1908
(The Finnish meteorological institute, 2025). Sodankyld mean total annual precipitation is 553 mm, and mean
wintertime 202 mm, mean annual temperature 0.9 °C and mean wintertime temperature -7.6 °C.

130
Table 1. Meteorological and landscape characteristics for Pallas and Sodankyla.
Pallas Sodankyla Data source

Elevation range. m 267-350 178-183 NLS
Mean annual air temperature (°C) 2008-2024 0.5 0.9 FMI
Mean annual total precipitation (mm) 644 553 FMI
2008-2024

Average snow depth Nov-May (cm) 65 48 FMI
2008-2024

Average winter wind direction Nov-Apr (°) 199 182 FMI
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Lidar extent (km2?) 0.8 11
Land cover (%): deciduous 0.1 0.1 SYKE Corine land cover 2018
coniferous 62.7 27.0
mixed 149 3.7
mire 17.2 62.7
canopy closure <30 % 35 41

Data sources: FMI (2025), SYKE (2018), National Land Survey of Finland (NLS) (2020).
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135 Figure 1. Location and maps of study sites (a) Sodankyla (b) Pallas. Gray area represents UAV-flight areas and black points
manual snow sampling locations and snow courses. Orthophoto from the National Land Survey of Finland.

2.2 Field measurements

In our field campaigns, four snow-on and one snow-off LiDAR surveys were conducted in both sites during the winter
of 2023-2024. The aim was to capture the snowpack in its different stages of winter: i) new snowpack, ii) maximum
140  snowpack, and iii) late, melting snowpack, to distinguish areas in each site with similar snow patterns and variability
(Fig. 2). Winter 2023-2024 the snow depths were above the average in Pallas and Sodankyla. In both sites, snow depth
started to decrease in March 2024, but increased again later in April 2024 due to heavy snowfall events (Fig. S3,

supplementary materials).
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145 Figure 2. Snow depts from each site's FMI stations. Sodankyla (a), Pallas (b). Dark dashed lines represent the UAV drone
campaign dates from the winter 2023-2024.

2.2.1 UAV LIiDAR surveys

UAV LiDAR mapping was performed at Sodankyl4 and Pallas using YellowScan Mapper+ (YellowScan, France),
equipped with an Applanix APX-15 inertial measurement unit and mounted on a DJI Matrice 300 RTK (DJI,
150 Shenzhen, China). The scanner operated with a 70.4° scanning angle and a 240 kHz pulse repetition frequency, with
both sites scanned at a cruising speed of 7 m/s, an altitude of 80 m above ground level, and a 70% overlap between
flight lines (Table S1. appendices). Trajectory correction was made in Applanix POSPac software using continuously
operating reference station (CORS) observations from National Land Survey of Finland CORS network as the
reference data.
155
We compared the accuracy of the DTMs between different data processing methods, using 5 GCP (ground control
point) as a reference. We tested Cloudstation's MinZ and Meanz methods and compared the lasR (v4.1.2; Roussel et
al., 2020) and lidR packages (v0.13.0; Roussel, 2024) in R for DTM calculation. The models from the Cloudstation
MinZ method best matched the accuracy of the 5 GCP plates and we chose the models produced by this method.
160 However, it should be noted that the DTMs of May campaign in Sodankyld produced by Cloudstation have notably
poorer accuracy compared to the DTMs produced by other methods. However, as the other campaign DTMs were the
most accurate, we decided to use the same method for each site and campaign and accept the May inaccuracies. In
addition, for each campaign, the data shows a DTM upscaling along the trajectory line borders, approx. 1-5 cm. The
uplifts are presumably due to poorer georeferencing of points at the trajectory edges and presumably overlapping
165  points from the two trajectories cause abnormal surfaces in DTMs. We tried to clean up the data from overlapping
points, but the overall accuracy of the DTM was degraded, so we chose to accept the inaccuracies in the UAV flight
trajectory edge regions.
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2.2.3 Manual snow measurements

170 Manual snow depth and density measurements were conducted on the same day as the UAV LiDAR flights and used
as verification and validation data for modelled maps. Within 6 hours of each survey, snow course measurements were
done through the study areas following the SYKE snow survey protocol (Kuusisto, 1984; Mustonen, 1965). Snow
depth was measured every 50 m and density every 200 m along the snow course transect in Pallas (Fig. 1a). In
Sodankyld, where the snow course is longer (4 km) the SWE was measured in 8 different sites along the snow course

175 representing different terrain types (Fig. 1b). Snow measurements points were geolocated using RTK GPS Emlid
RS2+ (Hungary) and Trimble GNSS system R12i (USA).

2.2.4 Automatic daily snow depth measurements

At least one snow depth sensor (Campbell Scientific SR50) can be found from each of the study sites. In Sodankyla,
the study site is equipped with three daily snow depth ultrasonic sensors across different environments to capture the
180  variability in snow cover (Fig. 1b). The sensors are operated by FMI and data is open access
(https:/Nitdb.fmi.fi/index.php). Sensors are in open peatland (N67°22.024', E26°39.070"), pine forest opening
(N67°21.706', E26°38.031") and inside sparse pine forest (N67°21.699', E26°38.051"). Pallas has one daily snow depth
ultrasonic sensor located in Kenttdrova (Fig. 1a) also operated by FMI (https://en.ilmatieteenlaitos.fi/download-
observations). The sensor is in the spruce forest in the upper part of the study area (N67°59.237', E24°14.579").

185 2.3 Data analysis
2.3.1 LIDAR data processing

LiDAR data from each campaign were pre-processed using CloudStation software. As part of this process, we
performed strip alignment of the flight lines to generate an accurately georeferenced point cloud. To classify points
belonging to the ground, we applied the following parameters: steepness (which reflects terrain variation) was set to

190 0.2, minimum object height (the vertical threshold above which an object is not considered part of the ground) was
set to 0.03 m, and point cloud thickness was set to 0.15 m. Following classification, we generated two types of DTMs:
MinZ and MeanZ, where the Z value represents the minimum and mean elevation, respectively, for each pixel. Both
DTMs were produced with a 10 cm spatial resolution. MinZ DTM showed better correspondence with the GCP plates
(Sect. 2.2.1) and was used in the following analysis.

195
Further DTM processing was conducted using ArcGis Pro 3.2.0. The snow depth rasters were generated by calculating
the difference between two DTMs: one collected during the winter season and the other from a bare ground survey at
the end of May/beginning of June. To standardize spatial resolution, the snow depth rasters were then resampled to
1m resolution. Snow depth values falling outside a reasonable range (<-0,5m; > 2m) were set to null to remove extreme

200 outliers, while minor negative values close to zero were corrected to zero (-0,5 — 0). Missing values were filled by
calculating the median value from surrounding cells, using the neighborhood median of 5x5 cell grid. The data was
clipped to area of interest (AOI), focusing the analysis on the buffer zone of 150m around the snow courses.

The error metrics were calculated using the 5 ground control points around the study areas and comparing their

205 accuracy to the derived DTMs following the suggestion of Rauhala et al. (2023). To estimate the uncertainty of
generated DTMs, the difference between UAS DTMs and RTK measured GCP elevation (Az) was calculated
following Equation 1:

Az, = DSMs, — zgcpt, (Eql)
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210  where tis the date of survey, DTMs is the snow surface elevation from the UAS survey, and zgcp is the GCP elevation
measured with RTK.

When the snow depth rasters are derived from two DTMs, their precision was estimated following Equation 2:

u= o(Az)*+ o(Azg)?, (Eq 2)

215 where o (Az, ) is the standard deviation for the difference between UAS DTM and RTK measured GCP elevation Az
for every winter campaign and o (Az;) is the standard deviation for the difference between UAS DTM and RTK
measured GCP elevation Az for bare-ground campaign.

To estimate the trueness of the calculated snow depth rasters, error propagation for mean error of snow-on and bare-
ground DTMs was calculated. It is calculated by finding the average of the differences between the UAS DTMs and
220  the GCP elevations, following Equation 3:

m = p(Az,) — pu(hze), (Eq3)

where u(Az,) is the mean error for the difference between each snow-on campaign DTMs and GCPs, and u(Az;) is
the mean error for the difference between bare-ground campaign DTMs and GCPs.

2.3.2 Clustering of snow lidar data sets

225  All analyses were performed using R Statistical Software (v.4.3.0, R Core Team, 2023). We used K-means clustering
(Hartigan & Wong, 1979) to classify snow depth clusters for each study area. Clusters were identified from a smaller,
random sample of the data. The detected clusters serve as a basis for the following random forest classification, which
determines the clusters for the remaining study area. The classification results in a collection of two layers, first
describing the probability (w) of each cell (ij) belonging to a specific cluster (c) wij and the other one describing which

230 cluster the cell is the most likely to be associated with. Choosing the optimal number of clusters is a central step in K-
means clustering, and various indices can be used to guide this decision, and we analyzed the indices with the NbClust
R package (v3.0.1; Charrad et al., 2014). In Sodankyl& and Pallas the optimal number suggested by the indices varied
from 1 to 8, but for simplicity and to be able to compare sites together we chose 3.

2.3.3 Associating the snow depth clusters with snow depth measurement sensors

235 The Asnow model (Winkler et al., 2021) needs daily snow depth reference measurements to be able to upscale the
snow depths for the entire study area. As only a single daily snow depth sensor is available in both Pallas, we used
interpolated snow depths from snow course data as reference values for the model. The snow depth measurements are
conducted once a month in Sodankyld and Pallas snow courses (Fig. 1a, 1b), and during each of the drone campaigns
(Fig. 2).

240
Snow depth measurements from snow courses were linearly interpolated to estimate snow depths between manual
observations. To improve the accuracy of these estimates, the interpolated values were adjusted using daily snow
depth changed recorded by the in-situ snow depth sensors (Fig. 1a, 1b). At each snow course location, the interpolated
snow depth was corrected by adding the daily change observed at the representative. Unlike Pallas, where one

245 reference sensor is available, Sodankyld has multiple ultrasonic snow depth sensors distributed across different
environments, allowing more representative corrections. To account for spatial variability in snow accumulation and
melt, three reference sensors were selected: one in a mire, one in a forest, and one in a forest opening (Sect. 2.2.4).
Each snow course measurement point is assigned to one of these environmental categories, ensuring that the most
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appropriate sensor was used for correction. If the corrected snow depth estimate resulted in a negative value, it was
250 set to zero.

For the clustering model details and equations, we refer to Geissler et al. (2023). The cluster numbers are assigned so

that the cluster with the highest mean snow depth gets the lowest number (cluster 1). The random forest model output

wij, ¢ IS used to calculate probabilities of snow course measurement points (s) belonging to the clusters (wsc) are
255 assigned by normalizing, so that they sum to one in each cluster according to Equation 4:

Wee = gz:j':c) (Eq. 4)
Zows,

The synthetic daily snow depths for each cluster SD,. (t) are calculated by multiplying the normalized probabilities by
260  the snow depth values of the corresponding snow course measurements and summing them for each cluster according
to Equation 5:

SDc (t) = wse X SDs(t) (Eq.5)
2.3.4  Creating daily SD and SWE maps

265 The synthetic snow depth (SD) maps SD ;;(t) are generated by combining synthetic daily snow depth data (SD. (t))
with cluster probabilities wijc and multiplying it with the time series data of that cluster (SD. (t)) according to Equation
6:

SDy(t) = EC: (Wije X SD:(1)) (Eq. 6)

270
The synthetic daily snow depth data for clusters was converted into SWE time series using Asnow model (Winkler et
al., 2021). The model consists of four modules, namely new snow and overburden, dry compaction, drenching or
scaling modules, and each module is activated depending on the change of snow depth between time steps. The model
has 7 parameters to be calibrated, where Fontrodona-Bach et al. (2023) suggested two of them to significantly related
275  to the site-specific climate variables. These two key parameters are maximum density of a snow layer (pmax) and new
snow density (p0). Only Sodankyld has snow measurements allowing the determination of p0. In other sites the model
was run with the values of p0 and pmax provided by Fontrodona-Bach et al. (2023). The rest of the 7 parameters were
kept as default on Winkler et al. (2021). More information on supportive information.
The daily SWE maps SWE;;(t) are calculated using the synthetic snow depth data SD.. (t) as an input for the model
280 and then using the same protocol as for HS maps to upscale the daily SWE estimates for the entire study area using
Equation 7:

SWE() = & (Wi X SWE(©)) (Ea.7)

3 Results
285 3.1 Accuracy of UAV based lidar for mapping snow depth in boreal and sub-arctic zone

At all study sites, the snow depth measured from snow courses increases until March, after which it starts to decrease
due to spring melting (Table 2). Variation of snow depths increases towards the melting season and in the April
campaign and the last campaign in May shows stabilization in variability as the snow has already melted from most
parts.
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290
Table 2. Manual snow course measurements in different campaigns and sites on winter 2023-2024.
Site January campaign March campaign April campaign May campaign
Pallas 73.8cm; SD 4.2 cm 98.2 cm; SD 6.3¢cm 95.2 cm; SD 11.6 cm 46.1 cm; SD 12.3cm
Sodankyla 53.9cm; SD5.8cm 62.2 cm; SD 9.4cm 46.3 cm; SD 19.5cm 22.4 cm; SD 6.5cm

The uncertainty of the derived DTMs were studied by comparing GCP points to the UAS DTMs (Sect. 2.2.1). The
difference between UAV LiDAR snow depth maps and RTK measured GCP (Eq. 1) resulted in varying accuracy

295 between sites and campaigns and their RMSES can be seen in Table 3. Weather conditions as well as the accuracy of
RTK signal might cause differences not directly related to the UAV LiDAR.

Table 3. The RMSE of the differences between GCP plates and LiDAR UAV snow depths and the precicion and trueness
of snow depth maps derived from snow depth maps in different campaigns and sites (Eqg.1; Eq.2; Eq.3).

Metrics Campaign Sodankyla (cm) Pallas (cm)
January 31 6.8
March 6.5 1.2
April 5.3 3.8
RMSE (Eq. 1) May 22.8 7.1
June 2.4 5.1
All 11.2 5.3
January 6.6 8.8
March 45 4.7
Precision (Eq. 2) April 3.9 6.1
May 20.8 6.3
Mean 8.8 6.5
January 2.7 3.3
March 5.1 3.2
Trueness (Eq. 3) April 0.9 3.3
May 13.2 6.7
Mean 5.3 4.1

300
Table 3 summarizes also the precisions of snow depth maps from standard deviations for each site calculated by Eq.
(2). The precision of the snow depth maps in Sodankyla is stable during the winter campaigns, performing the best in
April (4.5 cm), but has an uncertainty of 20.8 cm in May. In Pallas the precision ranges from 4.7 cm in March to 8.8
cm in January. The error propagation for mean error, meaning trueness of snow depth maps calculated by Eq. (3) are

305 also concluded in Table 3. In Sodankyla the trueness is the best in April (0.9 cm), decreasing in May up to 13.2 cm,
mostly caused by the computation of DTM with flooding of the mire areas. Pallas also has the highest trueness in the
beginning of the winter with relatively stable accuracies through the winter ranging from 3.2 cm-3.3 cm in January-
April and decreasing in May to 6.7 cm.

3.2 The characteristics of the snow depth clusters show similarities among sites

310  The characteristics of different snow depth clusters and their associated snow conditions at each site were analyzed
by grouping snow course measurements and environmental data according to their respective cluster classifications.

3.2.1 Sodankyl& snow depth and SWE clusters

Cluster 1 covers 21% of the total Sodankyla area, typically located in forests or pine mires (Fig. 3). It has an average
canopy height of 4.6m and is located typically less than a meter away from forests (Table 4). This cluster has the
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315 highest average modelled snow depth and SWE through the winter. According to the model, snow depth peaks at
14.3.2024 with 75 cm and SWE at 23.4.2024 with 164 mm (Table 4). The snow depth starts decreasing after the peak
but increased again at the end of April due to heavy snowfall events, decreasing rapidly afterwards. From snow course
measurements, the points classified to this cluster show their snow depth peak in 26.3.2024 with an average of 72.5
cm snow depth (Fig. S1, supplementary material). None of the 7 SWE measurement points of the snow course were

320  classified to this cluster (Fig. 3).
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Figure 3. Sodankyla site cluster and vegetation characteristics. Bounding boxes A, B and C are examples of different cluster
zones in relation to their canopy height and land cover.

325 Table 4. Cluster characteristics in relation to the entire study area of both sites
Site Sodankyla Pallas
Cluster 1 2 3 1 2 3
Frequency % 21 45 34 32 42 26
Mineral soil (forests) % 29 25 6 78 58 55
Grove mire (korpi) % 3 2 1 2 4 2
Pine mire (rame) % 49 19 5 17 18 9
Open mire (avosuo) % 20 54 87 3 20 33
CHM (m) mean 4.6 4.7 18 43 6.2 75
Distance to forest (m) mean 1 3 14 1 2 75
Max modelled snow depth (cm) 75 70 59 111 106 103
Max modelled SWE (mm) 164 147 114 267 247 234
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Cluster 2 is the most common, covering 45% of the total area, and is primarily located in the transition zone between
forest and open areas, including forest gaps, mire edges, and forest-mire boundaries (Fig. 3). This cluster has a mean
canopy height of 4.7 m and is on average 3 meters from cells classified as forests (Table 4). The modelled peak snow

330 depth occurs 14.3.2024 (70 cm) and SWE at 23.4.2024 with 147 mm (Table 4). Snow course measurements that are
classified as cluster 2 have their snow depth peaking in 15.3.2024 with an average of 67 cm, and SWE in 24.4.2024,
with an average of 166 mm (Fig. S1, supplementary material).

Cluster 3 predominantly occurs in open areas with low canopy height, with 87% of the area classified as open mire.

335  This cluster consistently exhibits the lowest snow depths and SWE values compared to the others (Fig. S1,
supplementary material). The highest modelled snow depth and SWE values for cluster 3 are at the same time as for
other clusters, snow depth peaking at 14.3.2024 (59 cm) and 23.4.2024 (114 mm). The snow course snow depths and
SWE from cluster 3 both peak 15.3.2024 with an average snow depth of 57 cm and SWE of 138 mm.

3.2.2 Pallas snow depth and SWE clusters

340 In Pallas, the three clusters derived from snow depth maps also show similar characteristics to those in Sodankyla
(Table 4). The most common cluster 2 covers 42% of the study area, where cluster 1 covers 32% and cluster 3 is the
smallest, covering 26% of the area. The snow depth in Pallas snow course began to decrease as early as late February
across all clusters (Fig. S2, supplementary material). The decline was less pronounced in points classified as cluster 1
compared to the other two clusters. However, the timing of peak SWE, marking the onset of snowmelt was later in

345  the spring compared with snow depth and varied among the clusters.

Cluster 1 is predominantly located in the forested areas, which accounts for 78% of the cluster, while the open areas
cover only 3% (Table 4). The mean canopy height is approximately 4.3m and distance to the forest cells is less than
1m, which is less than in other groups, suggesting smaller and denser forest types. Until January, modelled snow
350 depths for cluster 1 follow similar snow depths with the other clusters, but after February they surpass those of other
clusters and remain the highest until the end of the season (Fig. S2, supplementary material). Changes in the snow
depths between February and March are small, with occasional fluctuations. The modelled snow depth of cluster 1
peaks at 28.3.2024 (111 cm) and the SWE peaks in 10.5.2024 with SWE of 267 mm. Snow measurements from snow
course show that points classified to this cluster have their peaks in snow depth in 22.2.2024 and 25.4.2024 with both
355  having an average snow depth of 102 cm and SWE in 25.4.2024 with 265 mm.

Cluster 2, identified as a transition zone, is typically located near forest edges, forest openings and small-scale open
mire areas (Fig. 4). Forested areas cover 58% of the cluster, while open mire areas contribute 20%. The mean canopy
height is approximately 6m with 2.2m distance to forest edges (Table 4). The snow depth patterns for this cluster align

360  those of other clusters until late February, after which the snow depths in cluster 2 start to decrease. The modelled
snow depth peaks in mid-March at 18.3.2024 with 106 cm, but also 17.2.2024 with 105 cm. The modelled SWE peaks
later, on 28.4.204 with 247 mm and in 10.5.2024 with a SWE of 248 mm. The results are similar to the manual snow
course measurements, where points classified to this cluster have their SD peak in 22.2.2024 (101 cm). However,
snow course SWE peaks twice, having an average of 227 mm in 27.3.2024 and 233 mm in 25.4.2024.

365
Cluster 3 covers 26% of the Pallas area and is marked by a mixture of forest (55%) and open mire (33%) environments
(Fig. 4). It has the greatest distance to forest cells and the tallest mean canopy height of 7.5m (Table 4). This cluster
is typically found in open mires or high canopy forests. Modelled snow depths in cluster 3 are initially the highest at
the start of the season but exhibit a lower rate of increase compared to the other clusters after January and remain the

370 lowest throughout the rest of the season (Fig. S2, supplementary material). The peak modelled snow depth, 103 cm,
occurs in late February 17.2.2024, after which the snow depth steadily declines. The modelled SWE peak is at the
same time as for cluster 2, at 28.4.2024 (237 mm). Snow course snow depth measurements are the highest at 22.2.2024
with an average of 96 cm. SWE measurements from snow course within this cluster are limited, with only five
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measurements taken during the melting period in late April and early May. During this period, SWE values are initially

375 low but peak at 186 mm at 7.5.2024 (Fig. S2, supplementary material).
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Figure 4. Pallas site cluster and vegetation characteristics. Bounding boxes A, B and C are examples of different cluster
zones in relation to their vegetation.

3.2.4 UAV accuracy in comparison to clusters

To evaluate the accuracy of LIDAR UAV snow depths by cluster, snow course SD measurements were assigned to
their representative cluster. When comparing the LIiDAR UAV SD maps and manual snow course SD measurements,
the LIDAR maps consistently underestimate the snow course measurements in both Pallas and Sodankyla (Fig. 5a,
5b). In Sodankyld, all snow course measurement campaigns show similar correspondence to the LiDAR snow depth
maps and variations among clusters are similar, showing consistent agreement with snow course measurements (Fig.
5a). In Pallas the snow course measurements classified as cluster 1 correspond the best to the LIDAR snow depth
maps, while the largest discrepancies are observed in cluster 3, typically located in wet mire areas (Fig. 5b). The
accuracy of UAV LiDAR maps decreases towards melting season, where especially in Pallas the SD estimates are on
average up to -30 cm of the snow course measurements.
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Figure 5. Difference 4z,(cm) between the LIDAR UAV snow depths and snow course measurements by each campaign and
representative cluster in (a) Sodankyla and (b) Pallas.

Snow course measurements and the UAV LiDAR snow depth for each campaign were compared with the reference
snow depth sensor measurements of the study area (Fig. 1; Fig. 2) to define the overall representativeness of the
measurements and clusters. In Sodankyl4, all forementioned follow similar patterns; clusters have similar mean snow
depth as the sensors and are within the ranges of snow course measurements (Fig. 6a), except in May, when the snow
course snow depths do not match UAV LIiDAR nor the sensor snow depths. The highest snow depths are in forested
clustr, and reference sensor located in the forest opening. In Pallas, the UAV LiDAR snow depth maps underestimate
the snow height in relation to both snow course measurements and reference snow measurement (Fig. 6b). Cluster 1
has the highest correspondence to the snow course and reference sensor compared to the areas classified as other
clusters.
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Figure 6. Reference sensor snow depths compared to UAV LiDAR snow depths by cluster in Sodankyla (a) and Pallas (b)
405 in each campaign.

3.3 Model validation
3.3.1 Comparison of modelling results to snow course data

The model creates daily snow depth and SWE estimates for the study site. These estimates were compared to the snow
course measurements and UAV LiDAR snow depth maps to estimate their accuracy (Table 5). The snow depth
410 predictions of modelled maps have overall accuracy of 8.0 cm in Sodankyld and 5.8 cm in Pallas compared to the
manual snow course measurements (Table 5). The SWE values differ from snow course measurements in Pallas with
RMSE of 35.6 mm and 33.1 mm in Sodankyla during all measurements on winter 2023-2024. The predicted SWE
values of Sodankyla snow course follow the observed snow course SWE values (Fig. 7a). The model tends to slightly
underestimate the SWE, particularly during the late season, but the median values of measurements fall within the
415  model’s predictive range. Model performance is the highest in February, with RMSE of 12 mm (n=7). In contrast, the
performance declines towards the end of the season with RMSE of 73 mm in May (n=4) as can be seen in table 7.1.

In Pallas, the modelled SWE values are typically within the range of manual SWE measurement values (Fig. 7b). The
model has an overall accuracy of 32 mm (Table 5), with its best performance observed early in the season, with RMSE

420  of 6 mm in November (n=12) and 8 mm in December (n=12) as shown in table 5. The highest error, 59 mm (n=12),
occurs during the onset of the rapid snowmelt in early May. Despite this, the modelled SWE values successfully
capture the peak seasonal peak in April and May, consistent with the snow course measurements.
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Figure 7. The modelled SWE values in comparison to the measured SWE values of the snow course in Sodankyl& (a) and
425 Pallas (b) 2023-2024.

Table 5. Sodankyla and Pallas modelled SWE RMSE

Sodankyla Pallas
Date RMSE SD (cm) RMSE SWE (mm) Date RMSE SD (cm) | RMSE SWE (mm)
15.11.2023 | 6.3 (n=62) 15 (n=7) 2.11.2023 4.5 (n =46) 18 (n=12)
15.12.2023 | 5.9 (n=62) 13 (n=7) 16.11.2023 | 4.1 (n=46) 6 (n=12)
11.1.2024 4.6 (n=62) 16 (n=7) 1.12.2023 3.9 (n=46) 8 (n=12)
16.2.2024 5.0 (n=62) 12 (n=7) 14.12.2023 | 3.5 (n=46) 39 (n=12)
15.3.2024 6.4 (n=62) 30 (n=7) 9.1.2024 4.1 (n=45) 25 (n=12)
26.3.2024 6.7 (n=62) 32 (n=7) 22.2.2024 4.7 (n=45) 26 (n=12)
17.4.2024 9.2 (n=60) 37 (n=6) 5.3.2024 5.2 (n=46) 26 (n=12)
24.4.2024 13.8 (n=62) 50 (n=6) 21.3.2024 5.5 (n=46) 24 (n=12)
15.5.2024 9.7 (n=62) 73 (n=4) 27.3.2024 4.8 (n=46) 34 (n=11)
Mean 8.0 (n=555) 33.1 (n=58) 18.4.2024 6.3 (n=45) 53 (n=12)
25.4.2024 6.4 (n=45) 26 (n=12)
4.5.2024 6.7 (n=46) 59 (n=12)
7.5.2024 6.3 (n=46) 67 (n=12)
15.5.2024 8.1 (n=38) 25 (n=11)
21.5.2024 9.3 (n=46) 29 (n=3)
Mean 5.8 (n=677) 35.6 (n=169)
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Figure 8. Modelled SWE of the previous winters (a) 2023-2024, (b) 2022-2023 and (c) 2021-2022 at Pallas in comparison to
the snow course SWE measurements

430  The clustering and snow model (Section 2.3) provide daily maps of snow depth and SWE for each site. The defined
clusters can be used for other years as well, if there is adequate snow depth data, and the spatial patterns of snow
distribution are expected to be similar regardless of annual changes in snow depth and weather. Clusters defined by
the snow distribution patterns of 2023-2024 were therefore used to see how well the model established based on
clustering in winter 2023-2024 can reproduce previous years’ snow course measurements. SWE measurements from

435  previous years are available for Pallas starting from 2021, although the number of measurements varies across years.
The results show that SWE values from winter 2022-2023 snow course are aligned with the model estimates, also
capturing the peak SWE in late April (Fig. 8b). The winter of 2021-2022 exhibits the greatest variability in snowline
SWE measurements, with the model overestimating SWE for most of that winter. In other winters, the model typically
underestimates SWE relative to snow course measurements. Additionally, the variance in SWE values across clusters

440 is largest during the winter of 20212022, reflecting greater variability in snow depth along the snow course. However,
the average of the SWE from snow course on winter 2021-2022 aligns with cluster 3, and model successfully captures
the SWE peak in the beginning of May 2022. The model generally captures the snow course median SWE values from
the manual measurements, and the peak SWE values and its timing in previous winters.
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3.3.2. Spatial accuracy of the model is influenced by spring floods and snow wind distribution

445 Figure 9 visualizes the modeled snow depths for the March campaign in Sodankyld, highlighting the influence of
clustering on snow depth predictions. The modeled snow depths align with the observed snow course measurements,
but the model struggles to accurately represent extreme high or low values of snow depth captured by the UAV
LiDAR. The UAV LiDAR shows the spatial variability in snow depth between snow course measurement points,
which are not captured during the snow course measurement survey. To be able to evaluate the model performance

450  spatially, comparisons between modelled snow depth maps and UAV LiDAR maps were conducted for each of the
campaigns. First the difference between UAV LiDAR SD map and the model SD output was derived (Fig. 10 & 11).
The differences were then squared, averaged and the square root of the mean was calculated to obtain overall RMSE
for the campaign and model.
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Figure 9. Transect from Sodankyld modelled snow depths, UAV LiDAR snow depths and snow course measurements and
their representative clusters on 26.3.2024.
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460 Figure 10 Sodankyla model performance from different LIDAR UAV campaigns. The values define the difference between
LiDAR based snow depth maps and the modelled snow depth maps.

In Sodankyla the analysis resulted RMSEs varying from 6.2 cm to 11.0cm (January: 11.0 cm; March 8.2 cm; April;
8.8cm; May 6.2cm). The accuracy of the modeled snow depth maps is influenced more by the timing of the campaign
than by the specific location (Fig. 10). For instance, in an open mire area located in the southeastern section of the

465  snow course, the model's performance varies significantly, with difference ranging from 10-15 cm in March,
decreasing to less than 5 cm in May (Fig. 10, dashed box). Similarly, in the spruce dominated forest situated in the
southwestern part of the area, the highest accuracy is observed in April (difference <5 cm), whereas in January, the
model predictions exhibit a larger discrepancy, with errors ranging from 10-15 cm.

470 In Pallas, the model has higher inaccuracies compared to Sodankyla, with RMSEs varying from 18.7 cm to 24.7 cm
(January: 22.4 cm; March 24.7 cm; April 22.7 cm; and May 18.7 cm). The model therefore performs its best at the
beginning and at the end of the season. Spatially the model performs the best particularly at the southern end of the
snow course, characterized by homogeneous pine and mixed forest (Fig. 11). In contrast, the model has the highest
errors in the broad Lompolonjanka mire area in the northeast, where the snow is on top of flooding mire area, and on

475  the northern slopes of the bordering drumlins, where wind-driven snow accumulation is common. In these areas, the
model estimates over 30 cm difference to the UAV LiDAR map.
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Figure 11 Pallas model performance from different LIDAR UAV campaigns. The values define the difference between UAV
LiDAR snow depth maps and the model output.

480 4 Discussion

4.1. Snow and ice conditions impacted on UAV LiDAR accuracy

UAV LiDAR mapping showed high accuracy in all study sites and conditions, with average RMSE of UAV LiDAR
DTMs being 11.2 cm and 5.3 cm for Sodankylé and Pallas, respectively. These results align with previous studies,
which have reported RMSE values from snow depth maps ranging from 9 to 17 cm (Dharmadasa et al., 2022; Geissler

485  etal, 2023; Harder et al., 2020; Jacobs et al., 2021). However, our larger uncertainty and lesser accuracy was noted
in especially late melting period with flooding conditions that might be impacted by laser beams reflection from water
bodies.

The trueness of the snow depth maps derived from DTM maps vary between 0.9-13 cm and typically are 4-6 cm in

490 all sites and RMSEs of individual DTMs vary between 1 and 7 cm (excluding outlier Sodankyla May 22.1 cm). The
precisions here are based on the 5 GCP measurements as suggested by Dharmadasa et al. (2022). Pallas has the most
stable conditions and Sodankyla the actual lowest bias in April (0.9 cm). The accuracy of the GCP measurement itself
can affect the accuracy estimates. For example, one measurement in Sodankyld May has large difference to DTM,
which decreases the overall accuracy of the site. The point was not excluded from the calculations as the error can

495 also be due to the DTM calculation errors from flooding areas. The accuracy of UAV LiDAR snow depth mapping is
dependent on several factors, that can be divided into boresight errors, navigational errors, terrain- and vegetation-
based errors, and post-processing-errors (Deems et al., 2013; Pilarska et al., 2016). For example, fallen tree trunks,
very dense undergrowth or flooded marshes can pose challenges to point cloud classification and affect the output
DTM quality (Deems et al., 2013; Evans & Hudak, 2007).
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500
The best accuracy of snow depth maps (0.9 cm) of all sites and campaigns was calculated from April data from
Sodankyld. Two previous days before the flight campaign on 24.4.2024 approximately 10 cm of new snow had fallen
in the area, which helps to smooth the snow surface and cover previously melted or frozen areas under the snow,
which could otherwise affect the laser's reflection or the accuracy of the terrain model. On contrary, the trueness of

505  snow depth maps in all sites is the lowest in May (Table 3). Our findings highlighted increased measurement
inaccuracies during that period, as most of the snow had already melted and the large areas were covered with slush
and smooth water surfaces, which affects the laser beam reflection. The phenomenon can be seen in especially in
Sodankyld, which has the largest, typically flooding, mire areas among sites. Up to our knowledge there is no
systematical review on wet snow affecting laser beams. The results are similar with Rauhala et al. (2023), where the

510 poorest accuracy of SfM method based DTMs were collected during the late melting period in flooding areas. This is
due to the manual snow course measurements, where these flooding points are marked as having zero snow depth and
DTMs still showing snow in these areas. Vegetation type, such as dense coniferous forests, are known to decrease the
accuracy of different UAV methods of snow depth mapping (i.e Dharmadasa et al., 2022; Rauhala et al., 2023), as
coniferous canopy prevents ground returns. If we expect the cluster 1 to present forested regions and cluster 3 to

515 present open areas with low vegetation and compare the snow depth map accuracies to snow course measurements,
we cannot distinguish similar phenomena in Sodankyla or Pallas (Fig. 5). On both sites, the best correspondence
between snow course measurements and UAV LiDAR maps are in cluster 2, in forest openings. In contrast, especially
in Pallas, the biggest disparities occurring in cluster 3. This can be due to snow course measurement poles lifting from
the ground especially in wet areas where ground freezing and thawing move the pole during the years.

520
Broxton & van Leeuwen (2020) recommended the SfM method for snow depth monitoring under certain conditions,
such as in gently sloping terrains and areas without dense forest cover. The UAV LIDAR method was selected over
SfM method due to challenges identified, especially during the low lighting conditions and dense forest canopy cover
(Rauhala et al., 2023; Revuelto et al., 2021) . With advancements in SfM camera technology, the SfM method could

525 complement LiDAR monitoring, particularly in relatively flat regions like Sodankyld and Pallas. Nevertheless,
challenges remain for both methods in large mire areas. While the SfM struggles with surface homogeneity, LIDAR
faces accuracy issues in detecting bare ground under flooded, uneven and wet surfaces. Additionally, manual snow
depth measurements are also less accurate due to ice and water layers on the ground.

4.2 Site characteristics explaining the different snow depth clusters

530 Site characteristics impacted notably to snow depth clustering in our boreal and sub-arctic sites. Especially, we noted
that canopy cover, open peatlands and transition zones with wind shelter had a clear and similar influence on clustering
in both sites. Additionally, we noted that the clusters have similar snow dynamics in both sites. The number of clusters
has a major impact on the success of the classification, and the ability to identify specific features of each cluster
depends on the quality of the clustering process.

535
The study employed three different categories for clustering, as initial tests demonstrated their suitability for
representing different snow patterns in study areas. Equal number of clusters also provide a basis for site
comparability. Our analysis resulted snow depth classification into forests with different trunk heights (cluster 1),
transition zone between forests and open areas, including forest edges and gaps (cluster 2), and open areas (cluster 3)

540 mainly peatlands. The results are consistent with those of Mazzotti et al. (2023) who noted that snow accumulation
patterns can be classified in three groups based on the relationship between canopy structure and ablation rate.

In forested areas, distinguishing between clusters 1 and 2 remains challenging due to their similar site characteristics
(Tables 5 & 6). Forested areas present challenges for clustering because of varying snow height and dynamics
545 influenced by canopy cover and trunk size (L.-J. Merid et al., 2023). Forest gaps in the coniferous forests are known
to create clear and distinct variations in snow depth within the forests, and also SWE varies up to three times more in
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unevenly distributed forests compared to evenly distributed forests (Woods et al., 2006). For this reason, forested areas
contain both clusters 1 and 2 in both sites. The cluster 1 receives the most snow and has the highest SWE values,
especially during the late winter (Fig. 7a; 7b). Lundquist et al. (2013) concluded that this is the typical situation in
550 cold climates, where snow lasts longer in forests than in forest openings. In both of our sites, snowmelt starts the latest
and snow cover lasts the longest in cluster 1. The forested areas in Sodankyla and Pallas are spruce dominated, where
the canopy shades the ground from the sun radiation, reduces wind effects and traps snow, though also limits snowfall
reaching the ground. In this cluster, we expect the snow accumulation to follow canopy structure throughout the season
and the ablation to be too weak or constant to change it, as defined by Mazzotti et al. (2023).
555
Cluster 2 is the most common cluster on both sites (Tables 5 & 6), likely since it can be founded in both forested and
open environments. While the snow depth trends across cluster 1 and cluster 2 are similar, cluster 2 experiences an
earlier start of snowmelt in spring compared to forested cluster 1 (Fig. 7a; 7b). This indicates more short-wave solar
radiation exposure compared to cluster 1, where SWE peaks at the end of April before the melting begins. Cluster 2
560  characteristics correspond to previous studies, by Koutantou et al. (2022) and Meri6 et al. (2023), where canopy
structure influences snow accumulation, but in ablation subsequently disrupts these patterns, resulting in earlier timing
of snow loss. This phenomenon can also be seen in the modeling outputs from the previous two winters in Pallas (Fig.
8), especially in winter 2022-23, when snowmelt in cluster 2 started simultaneously with cluster 3. These
characteristics are seen in both sites and support the location of the cluster 2 to be in transition zones between open
565 and forested areas.

Open areas are subject to wind redistribution and prolonged solar exposure resulting in lower and smoother snow
depth patterns, that correspond to the results of cluster 3. In cluster 3, snow depth starts decreasing notably earlier than
other clusters, in February 2024, suggesting faster melting due to both higher solar radiation and flooding. In the
570  flooding mire areas, melting waters from below also accelerate snowmelt. Both snow depth and SWE values are lower
in this cluster in comparison to the other clusters, corresponding to the results from L.-J. Meri6 et al. (2023). An
interesting aspect of the classification is the differentiation between mires Lompolonjénké (box A; Fig. 4) and Vlisuo
(box B; Fig. 4). Vélisuo mire, classified to cluster 2, is more sheltered, surrounded by forests and is located at a higher
altitude than the Lompolonjanka mire, classified as cluster 3. Vlisuo is drier and partly artifially drained, while
575  Lompolonjénka is larger drained by a small natural stream typically flooding in spring (Marttila et al., 2021).

In a recent study from Pallas site by L.-J. Merid et al. (2023), the variations in snow depth were partially explained by
canopy interception, longwave radiation emitted by trees, and wind-driven redistribution, which contributed to snow
deposition along forest edges in both forested and peatland environments. The snow depth was higher within dense
580 canopy, with the greatest accumulation observed in coniferous forest areas, followed by mixed forests, transitional
forest/shrubland, and open peatlands. In both Sodankyld and Pallas the dominant winter wind direction is from the
south, which leads to snow accumulation in forest canopy and their leeward side, where typically the highest snow
depths are measured, corresponding to the results from Dharmadasa et al. (2023). In Pallas this results in snow
accumulating particularly behind the drumlins north of the mire Lompolonjanka (Fig. 4 Box A). This is also reflected
585 in the accuracy of the model in these areas - the three clusters may not be sufficient to account for the particularly high
snow depths of the northern sheltered slopes (Fig. 11). In comparison, snow dynamics in Sodankyla are influenced
by vegetation rather than by topographical variations, as the area itself is flat with elevation differences of less than
two meters. Forest structure is the main driver of snow accumulation, but shortwave radiation can disrupt these
patterns, especially on south-facing slopes where there is expected more early-season ablation (Mazzotti et al., 2023).
590  Weather further affects accumulation and ablation processes, leading to interannual variations in snow distribution,
explaining why the relationship between snow distribution and canopy structure varies by location and year.

K-means clustering is widely used in many applications for partition datasets but is known to have problems associated
with centroid initialization, handling outliers and dealing with various data types (Ahmed et al., 2020; Morissette &

595 Chartier, 2013). While more clusters might be able to capture finer details, such as directional classes (Mazzotti et al.,
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2019), the current classification to three groups corresponds to non-directional categories. These results align with
previous findings that emphasize the importance of canopy structure in addition to topography and weather conditions
on snow dynamics (Dharmadasa et al., 2023; Mazzotti et al., 2023). For instance, Geissler et al (2023) classified their
Alpine study area into four classes, further subdividing the open class into shaded and exposed subclasses. Although

600 using more than three clusters could potentially improve the finer scale spatial accuracy, the number of clusters is
always a question of the data used and left to the user to decide, as noted also in the study of Geissler et al. (2023).
Based on our observations, we conclude that the number of clusters is dependent on the landscape characteristics of
the site and the purpose of the model output. If the interest is to investigate the differences between snow dynamics in
different environments, we recommend increasing the cluster number to include also shaded, exposed and potentially

605 different forest types to capture local variability (Currier & Lundquist, 2018; Fujihara et al., 2017; Mazzotti et al.,
2020, 2023; Trujillo et al., 2007). However, especially in topographically homogeneous regions such as Sodankyla,
less classes might be enough to represent the overall snow distribution with reasonable accuracy. The accuracy of the
model output together with the homogeneous landscape supports the use of three clusters. In areas with a larger variety
of terrain types, such as diverse slopes and orientations, more categories, 4 to 5, could be justified.

610 4.3 Lidar-based snow clustering and modeling produces SWE estimates comparable to snow surveys

The clustering derived from UAV LiDAR snow depth maps, combined with the Asnow model, produced snow depth

and SWE estimates with RMSEs of 8 cm and 33.1 mm in Sodankyl, and 5.8 cm and 35.6 mm in Pallas. The model

can reproduce the onset of snowmelt and peak SWE and, after one season of drone surveys, needs only daily snow

depth measurements as input. The localization of model parameters, especially pmax and p0, and the amount of daily
615 snow depth reference data for the identified clusters, improved the results.

The results are consistent with a similar study by Geissler et al. (2023), where the model errors were 8 cm for snow
depth and 35 mm for SWE in comparison to the manual snow measurements. Winkler et al. (2021), the creators of the
presented Asnow model, produced a SWE RMSE value for their entire validation data set of about 30.8 mm, which is
620 consistent with other similar models and the results obtained in this study. Multilayered thermodynamic one-
dimensional models for SWE estimation, such as SNOWPACK, CROCUS and SNTHERM, obtained more accurate
results in the Langlois et al. (2009) study with an RMSE of 12.5-14.5 mm, but these models also require atmospheric
variables that are not ubiquitously available. Studies with CROCUS also have produced SWE estimates RMSE values
in the same order as this study (Vionnet et al., 2012) with an accuracy of 39.7 mm. Mortimer et al. (2020) studied the
625  long-term gridded SWE products and compared their results to snow course measurements. None of the 9 tested
products was significantly better than others, rather multiproduct combination provided the most accurate results. The
lowest RMSE over Finland was 33 mm produced by ERA5. Thus, depending on the region and winter climatic
conditions, there may be variability in the modelling results and our UAV results are in typical measurement estimate
ranges.
630
The RMSE of the modelled snow depths in comparison to manual snow course measurements (Table 5) in Sodankyla
are higher than in Pallas, likely due to several factors. In large mire areas, such as those found in Sodankyld, the
formation of ice layer at the bottom of the snowpack may compromise the accuracy of snow course measurements
(Stuefer et al., 2020). Additionally, the accuracy of snow depth maps in Sodankyla was reduced when parts of the
635 areas were flooded in May (Table 3). Also, normalizing snow depths when generating daily estimates for clusters
ensures internal consistency but reduces local variability, leading to an underestimation of extreme values. Even
though the RMSE of the modeled snow depths relative to snow course measurements in Pallas is lower than in
Sodankyld, the RMSEs calculated for the entire study area are higher in Pallas. Specifically, RMSE values range from
18.7 to 24.7 cm in Pallas, compared to 6.2 to 11.0 cm in Sodankyl&. One contributing factor to the higher RMSE in
640 Pallas is the accuracy of the snow course measurements (Fig. 5). The errors arise from the use of interpolated snow
course data as model input. These interpolations overestimate actual snow depths in Pallas (Fig. 6), introducing a
systematic bias. This overestimation of snow course measurements also partially explains the higher RMSE of the
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Pallas SWE model compared to Sodankyld, even though the modeled snow depth estimates for snow course were
more accurate (Table 5). In contrast, UAV LiDAR-derived snow depths for the entire Sodankyla region closely align

645  with snow course measurements (Fig. 6), indicating better agreement between manual measurements and broader
regional snow depth estimates in this area.

Our model can detect SWE peaks in some of the clusters (Fig. S1; S2, supplementary material). In Sodankyld, the
SWE peak for cluster 2 aligns with the snow course measurements recorded at the dates between 22.4 and 24.4.2024.
650 The model estimates SWE for cluster 3 to range between 107 and 114 mm from 14.3 to 23.4.2024 and snow course
data of the cluster 3 indicates that SWE reaches its peak in mid-March before gradually decreasing until the end of
April, demonstrating good agreement with the model estimates. However, while the timing of the peak is well
captured, a slight discrepancy remains in its magnitude. Due to the limited number of snow course measurements
classified within cluster 1, detecting meaningful correlations for this cluster was not possible. In Pallas, the model
655  estimates SWE peaks for cluster 1 and 2 on 10.5.2024, while for cluster 33, the peak is predicted to occur earlier, on
28.4.2024. However, a slight temporal lag is observed as snow course measurements indicate that for clusters 1 and 2
the SWE peaks on 25.4.2024. For cluster 3, the discrepancy is more pronounced, with observed SWE peaking already
at the end of March. The results show regional differences in SWE accumulation and melt dynamics, with the model
capturing general trends but showing slight timing offsets, particularly in Pallas.
660
The model was validated at the Pallas site to assess its performance under different winter conditions from 2021 to
2023 from which no data was used in developing the model (Fig. 8). The results indicate that the model successfully
captures both the peak SWE and its timing, despite variations in winter conditions between different years. During the
2021-2022 winter, the variance in both snow course SWE and modeled SWE is notably higher compared to the other
665  winters. This increased variability is partly due to the fluctuating snow depths that season due to both mid-winter melt
events and heavy snowfall events.

Several studies are predicting increase in mixed and liquid precipitation in winter months in Finland and, particularly
in northern parts, increased solid precipitation and earlier springs (Luomaranta et al., 2019; Ruosteenoja et al., 2020).

670 Rain-on-snow (RoS) events are expected to increase in the future for the northern Norway region during spring and
summer (Mooney & Li, 2021; Pall et al., 2019), potentially leading to an increase of such events also in northern
Finland. Such events increase the liquid water content of the snowpack, leading to rapid saturation and accelerated
snowmelt, reducing snow depth faster than natural snowmelt processes (Yang et al., 2023). Even though Geissler et
al. (2023) noticed the model’s limited capacity of mapping quick changes during RoS events, the SWE estimations of

675  thismodel add value to operational snow course measurements by enabling continuous monitoring of changes between
monthly observations. This capability is especially valuable for capturing rapid changes during events such as snow
depth variations caused by melting, snowfall, or RoS, where these dynamics can be scaled across the entire study area
rather than relying on data from a single reference sensor. By integrating daily estimates from local snow depth sensors
with snow course data and clusters, our approach enhances event coverage in modeling. The model’s ability to capture

680 peak snow depth and melt-out dates in real time, provided that reference snow depth sensors transmit data online,
offers essential data for hydrological observation networks and improves the spatiotemporal resolution of snow course
measurements.

4.4 Practical aspects and suggestions for future studies

Combining observation-based clustering with intensive field data can improve the spatiotemporal coverage of the
685 snow course measurements and give important insights into the site-specific snow cover dynamics. Our results output
is encouraging for other sites to test the approach. This study applied intensive UAV LiDAR campaigns to capture
fine detailed information on snowpack variability also in forested areas, which are known to cause errors in UAV SfM
methodology (Broxton & van Leeuwen, 2020) and poor lighting conditions and dense forest canopy cover (Rauhala
et al., 2023; Revuelto et al., 2021). Regardless of the sensor used, the impact of winter conditions on the battery life
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690 of the drone should be considered. The batteries of the DJI Matrcie 300 RTK had to be replaced up to five times
during the flight campaign, especially in cold weather. Occasionally RTK coverage can also become a limiting factor
in remote areas, for example in Pallas in January, due to the temporary unavailability of the VRS signal. However,
especially in sparsely vegetated areas, the UAV SfM method could offer a more cost-efficient method for producing
3D data of snow dynamics and support the output of more expensive UAV LIiDAR. UAV data acquisition with LIDAR

695  or SfM can also further support the spatiotemporal resolution of remote sensing products, as their usage in local scale
snow research is still limited due to spatial and temporal coverage issues (Muhuri et al., 2021; Stillinger et al., 2023;
Tsang et al., 2022). As noted by Geissler et al. (2023), this method combining observations and machine learning can
improve spatial representation of hyper-resolution models (Mazzotti et al., 2021) or advance refining sub-grid
variability in larger-scale models (Currier & Lundquist, 2018).

700
Mazzotti et al. (2023) indicated that the snow distribution patterns found at a specific location may not be consistent
from year to year, especially in changing weather conditions. The snow distribution patterns are site-specific due to
vegetational and topographical differences, and some clusters might have different responses to different weather
conditions. Especially winters with abnormal snowfall cause differences in snow extents and snow depth variability

705 (Pflug & Lundquist, 2020). A follow-up year with different weather conditions could enhance and verify the
representativeness of the clusters and provide insights into interannual variability, as local snow distribution patterns
show recurrent similarities (Sturm & Wagner, 2010).

Improvements in the input data quality can enhance the accuracy of the model, but the model also seems robust, for

710  example for Pallas site snow course measurement errors (Table 5). We would recommend a more comprehensive
network of snow depth sensors that could improve daily snow depth forecasts based on snow course measurements,
particularly in Pallas, where only limited data from Kenttarova snow depth sensor is available. At least one reference
sensor in each land cover type, corresponding to a cluster, would improve the estimates. As fresh snow density and
maximum snow density are among the most important parameters of the model (Fontrodona-Bach et al., 2023), the

715 model parameters should be localized for each site, rather than relying on estimates based on literature. Additionally,
as the greatest inaccuracies in snow course measurements at Pallas were observed in mire areas, it is important to
acknowledge that these regions are prone to larger errors in both manual and UAV-based snow depth data collection.
Beyond the influence of snow-forest interactions, our results also emphasize the need to study snow accumulation and
melt processes in extensive peatland areas, which are particularly prevalent in the Arctic boreal zone.

720 5. Conclusions

This work combines emerging methods in close-range remote sensing and machine learning for high spatial and
temporal resolution estimates of snow depth and snow water equivalent. The work is an important new application of
such methodology in the vast, yet relatively underexplored, boreal and sub-arctic snow regimes. The study used an
intensive field campaign at two well-established snow and hydrology research sites, Sodankyla and Pallas in Finnish

725 Lapland. The different sites represent different conditions both in terms of topography and there were also significant
differences in weather conditions between the different campaigns. The snow depth maps from different areas and in
different winter conditions are the first from these study areas at a centimeter scale of accuracy and allow an evaluation
of the method in relation to other snow depth and SWE products.

730 The used clustering approach together with the Asnow model has potential for expanding the current operational snow
monitoring network to different sites. The resulting SWE and snow depth maps are possible to produce in areas with
snow depth sensors in different terrain types, or a regularly measured snow course with at least one snow depth sensor
measuring daily. While the accuracy of the snow course measurements must be considered, the existing snow courses
provide a good basis for similar approaches for local scale SWE and snow depth mapping in other boreal sites too.

735 Even though clusters formed here are based on one winter and are site specific, we showed how they translate well to
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different winters with different snow amounts at the sites. Founded on the well-established consistency of local-scale

snow distribution between years, new technology applied in this research enables cost-effective solutions for SWE

monitoring after one winter of UAV LiDAR surveys. Our work extends the previous applications of similar methods

successfully to boreal taiga snow, where forest greatly complicates any snow monitoring, remote sensing and
740 modeling.

With climate change leading to increasingly variable weather and more frequent rain-on-snow events, this

methodology provides valuable tools for estimating rapid changes in snow depth and SWE at both local and catchment

scales. Such spatially and temporally refined estimates of the snowpack condition are needed for catchment scale
745 snow model validation and calibration, as well as to improve resource planning and prediction.
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