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Abstract 

Climate change is rapidly altering snow conditions worldwide and northern regions experiencing particularly 

significant impacts. As these regions warm faster than the global average, understanding snow distribution and its 

properties at both global and local scales is critical for effective water resource management and environmental 15 

protection. While satellite data and point measurements provide valuable information for snow research and models, 

they are often insufficient for capturing local-scale variability. To address this gap, we integrated UAV LiDAR with 

daily reference measurements, snow course measurements and machine learning (ML) approach. By using ML 

clustering, we generated high-resolution (1 m) snow depth and snow water equivalent (SWE) maps for two study areas 

in northern Finland. Data were collected in four different field campaigns during the 2023–2024 winter season. The 20 

results indicate that snow distribution in the study areas can be classified into three distinct categories based on land 

cover: forested areas, transition zones with bushes, and open areas namely peatlands, each showing different snow 

accumulation and ablation dynamics. Cluster-based modelled SWE values for the snow courses gave good overall 

accuracy, with RMSE values of 31–36 mm. Compared to snow course measurements, the cluster-based model 

approach enhances the spatial and temporal coverage of continuous SWE estimates, offering valuable insights into 25 

local snow patterns in the different sites. Our study highlights the influence of forests and forest gaps on snow 

accumulation and melt processes, emphasizing their role in shaping snow distribution patterns across different 

landscape types in arctic boreal zone. The results improve boreal snow monitoring and water resource management 

and offer new tools and high-resolution spatiotemporal data for local stakeholders working with hydrological 

forecasting and climate adaptation and supporting satellite-based observations. 30 
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1 Introduction 

Snow is an important part of the hydrological cycle and highly relevant for societies and ecosystems, especially in 

high latitude and mountainous regions. Snow cover, the timing and distribution influences directly on climate energy 35 

budget through snow albedo (Callaghan et al., 2011; Li et al., 2018), ecosystems and habitats including species and 

vegetation distribution (Thiebault & Young, 2020), biogeochemical processes in soils and seasonal ground frost (Ala-

Aho et al., 2021; Croghan et al., 2023; Jan & Painter, 2020). Additionally, snow resources have a major impact on 

catchment, river and groundwater water budgets and seasonal distribution (Meriö et al., 2019). Snow-covered areas 

are decreasing as global temperatures rise, leading to a consistent decline in snow water equivalent (SWE) (Colombo 40 

et al., 2022; Faquseh & Grossi, 2024; Kunkel et al., 2016; Räisänen, 2023; Y. Zhang & Ma, 2018). A recent study by 

Gottlieb & Mankin (2024) shows that snowpack has decreased in half of the Northern Hemisphere river basins and 

the declines are highly related to human actions. The timing and amount of snowmelt, along with the SWE during the 

melting period, are crucial for local water balance and floods (i.e., Bavay et al., 2013; Callaghan et al., 2011; Wang et 

al., 2016). Changes in snow conditions and rising temperatures are causing earlier flood peaks in snowmelt-dominated 45 
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catchments with a decline in streamflow later in the year (Berghuijs & Hale, 2025; Engelhardt et al., 2014; Matti et 

al., 2017). Snowmelt significantly influences near-surface hydrological effects (Muhic et al., 2023) and soil moisture 

in these regions (Okkonen et al., 2017).  

 

Snow models are an important part of water resource planning and prediction. These models provide estimations of 50 

snow related hydrological parameters for areas and times where ground observations are not available and can be used 

for creating various scenarios. However, accurate prediction of snow-water resources, snow models require high-

resolution data as input, testing and validation. Satellite based remote sensing is still rather a coarse resolution and has 

limited accuracy with canopy cover (Muhuri et al., 2021; Rittger et al., 2020). Thus ground-based manual 

measurements for feeding operational models are still conducted. The snow course network provides important data 55 

for models and serve as a long-term historical dataset; however, they are time-consuming, the accuracy varies 

(Beaudoin-Galaise & Jutras, 2022; Kuusisto, 1984; Mustonen, 1965), and temporal resolution is weeks to month. 

Thus, it is not ideal for capturing peak snow depth or melt-out dates (Malek et al., 2020).  

 

To bridge the knowledge and technical gap between remote and ground observations, uncrewed aerial vehicles (UAV) 60 

have been proven to be efficient in the snow depth and SWE estimations with decent cost and accuracy (e.g., (Adams 

et al., 2018; Niedzielski et al., 2018; Rauhala et al., 2023). Like satellite platforms, also UAV systems can carry both 

optical and radar-based sensors and provide high resolution spatial information. Photogrammetry, including RGB and 

stereo-imagery, can result in centimeter-scale accuracy in snow depth mapping over catchment scale and has relatively 

low cost compared to radars like ground-penetrating radar (GPR) and light detection and ranging (LiDAR) (Maier et 65 

al., 2022; Nolan et al., 2015; Rauhala et al., 2023). However, photogrammetry-based products, like structure-from-

motion (SfM), have limitations in lighting conditions and dense vegetation, and the decision between cost-

effectiveness and accuracy is dependent on the site characteristics (Rauhala et al., 2023; Rogers et al., 2020). Recently 

LiDAR sensors have got more affordable, compact and lightweight. Technical advancements, such as improved 

inertial measurement unit (IMUs) and global navigation satellite systems (GNSS), have enhanced their accuracy and 70 

performance, making LiDAR more cost-effective and competitive compared to UAV photogrammetry (Bhardwaj et 

al., 2016; Rogers et al., 2020). The UAV LiDAR technology potentially offers high accuracy over large spatial areas 

and allows catchment-scale mapping also even under canopy cover, unaffected by overcast conditions or shadows 

(Dharmadasa et al., 2022; Harder et al., 2020; Jacobs et al., 2021; Mazzotti et al., 2019). LiDAR based snow depth 

data can also be used to estimate the spatial distribution of SWE in landscape scale in a decent cost-effectiveness 75 

(Broxton et al., 2019; Geissler et al., 2023).  

 

Snow conditions are mostly controlled by temperature and precipitation (Mudryk et al., 2020; Mudryk et al., 2017), 

and changes in global and local climate trends impact snow cover differently across regions. However, local snow 

accumulation is dependent on-site characteristics, such as topography, vegetation, and weather and wind distribution 80 

(Currier & Lundquist, 2018; Mazzotti et al., 2019, 2023). Forest structure significantly affects snow accumulation 

(Mazzotti et al., 2023) and SWE values for forested areas appear significantly higher than in tundra and shrub tundra 

zones (Busseau et al., 2017; Dharmadasa et al., 2023). The effect of forest structure to snow melt also depends on the 

climate, as in cold regions, snow lasts longer in forests than in forest openings, whereas in warm climates, it stays 

longer in forest clearings (Lundquist et al., 2013). Additionally, snowpack characteristics are spatially different in 85 

forest gaps (Bouchard et al., 2022) and edges (Currier et al., 2022; Mazzotti et al., 2019). Vegetation changes, such as 

the northward retreat of the tree line, densification of existing vegetation and migration of new species towards the 

poles, will also affect snow dynamics and its effects are not yet fully known (Aakala et al., 2014; Franke et al., 2017; 

Grace et al., 2002; Ropars & Boudreau, 2012). For better understanding of snow processes, we need improved tools 

and approaches, especially with localized high resolution spatial data.   90 

 

Even though annual changes in snow cover are dominated by the weather conditions, different patterns, “clusters”, of 

snow distribution and melting can be detected (Currier et al., 2022; Geissler et al., 2023; Matiu et al., 2021). These 

snow distribution clusters are site-specific and dictated by the local site characteristics, and importantly they can be 
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extended to different years (Pflug & Lundquist, 2020; Sturm & Wagner, 2010). Revuelto et al. (2020) successfully 95 

modeled daily snow depth maps using in-situ measurements and time-lapse photographs, and collected field data from 

two winters was estimated to be enough for the random forest model to estimate snow depth for other years. Repetitive 

UAV surveys over the winter season can similarly provide spatial information of snow cover, helping to identify 

factors affecting snow distribution. Different machine learning approaches have shown promising results in snow 

depth and SWE mapping for different regions (J. Zhang et al., 2021), as they can reduce biases and enhance overall 100 

accuracy (King et al., 2020; Vafakhah et al., 2022), but uncertainties and challenges call for more testing in different 

conditions (Meloche et al., 2022; Revuelto et al., 2020). Especially, the accurate definition of SWE from snow depth 

clusters still presents challenges (Geissler et al., 2023).  

 

Our study produces spatial daily snow depth and SWE estimates in different sites based on a combination of LiDAR-105 

based snow depth maps, snow course measurements and continuous snow depth measurements. The field data was 

collected during winter 2023-24 from two different sites in the Finnish Lapland, each with long-term monitoring 

infrastructure and existing snow course measurements, representing different vegetational and topographical 

conditions typical for the boreal and sub-arctic landscapes. In this study, we investigate the ability of UAV LiDAR 

method to map snow depth in forested boreal and sub-arctic sites across northern Finland. We discuss how snow-110 

depth clusters and characteristics derived from machine learning could be used to improve SWE estimates in our study 

sites in substantially higher spatial and temporal resolution compared to traditional operational snow course 

measurements. We also evaluate the output of the LiDAR-based snow clustering and model SWE estimates and 

compare them to the snow course measurements in each site. 

2 Data and methods 115 

2.1 Study areas 

Three study areas were chosen to present different environmental conditions of the Finnish Lapland and sub-arctic 

and boreal zone, namely Pallas (Fig. 1a), Sodankylä (Fig. 1b). All sites have on-going snow course measurements 

operated by the Finnish Environment Institute (SYKE), at least one ultrasonic snow depth sensor together with weather 

station operated by the Finnish Meteorological institute (FMI) and all data is open access (Sect. 2.2.4).  120 

 

Pallas (67∘ 59’ N, 24∘ 14’ E) is the northernmost among the study sites and located the highest from the sea level. The 

land cover is mostly coniferous forests (63%), with mires and mixed forests (Table 1). Pallas mean total annual 

precipitation is 644 mm, and mean wintertime precipitation of 233 mm, mean annual temperature 0.5 °C and mean 

wintertime temperature -7.0 °C. It has an average of the highest snow depths compared to the other sites. Sodankylä 125 

is located the middle part of Lapland (67° 21' N, 26° 37' E), the land cover is mainly mire (63%) and the elevation 

range is low (Table 1). Sodankylä site is in the FMI research station, which has daily weather observations since 1908 

(The Finnish meteorological institute, 2025). Sodankylä mean total annual precipitation is 553 mm, and mean 

wintertime 202 mm, mean annual temperature 0.9 °C and mean wintertime temperature -7.6 °C.  

 130 

Table 1. Meteorological and landscape characteristics for Pallas and Sodankylä. 

 Pallas Sodankylä Data source 

Elevation range. m 267-350 178-183 NLS  

Mean annual air temperature (°C) 2008-2024 0.5 0.9 FMI 

Mean annual total precipitation (mm) 

2008-2024 

644 553 FMI 

Average snow depth Nov-May (cm)  

2008-2024 

65 48 FMI 

Average winter wind direction Nov-Apr (°) 199 182 FMI 
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Lidar extent (km²) 0.8 1.1  

Land cover (%): deciduous 0.1 0.1 SYKE Corine land cover 2018 

coniferous 62.7 27.0  

mixed 14.9 3.7  

mire 17.2 62.7  

canopy closure <30 % 3.5 4.1  

Data sources: FMI (2025), SYKE (2018), National Land Survey of Finland (NLS) (2020). 

 

 

Figure 1. Location and maps of study sites (a) Sodankylä (b) Pallas. Gray area represents UAV-flight areas and black points 135 

manual snow sampling locations and snow courses. Orthophoto from the National Land Survey of Finland. 

2.2 Field measurements 

In our field campaigns, four snow-on and one snow-off LiDAR surveys were conducted in both sites during the winter 

of 2023-2024. The aim was to capture the snowpack in its different stages of winter: i) new snowpack, ii) maximum 

snowpack, and iii) late, melting snowpack, to distinguish areas in each site with similar snow patterns and variability 140 

(Fig. 2). Winter 2023-2024 the snow depths were above the average in Pallas and Sodankylä. In both sites, snow depth 

started to decrease in March 2024, but increased again later in April 2024 due to heavy snowfall events (Fig. S3, 

supplementary materials). 
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Figure 2. Snow depts from each site's FMI stations. Sodankylä (a), Pallas (b). Dark dashed lines represent the UAV drone 145 

campaign dates from the winter 2023-2024. 

2.2.1 UAV LiDAR surveys 

UAV LiDAR mapping was performed at Sodankylä and Pallas using YellowScan Mapper+ (YellowScan, France), 

equipped with an Applanix APX-15 inertial measurement unit and mounted on a DJI Matrice 300 RTK (DJI, 

Shenzhen, China). The scanner operated with a 70.4° scanning angle and a 240 kHz pulse repetition frequency, with 150 

both sites scanned at a cruising speed of 7 m/s, an altitude of 80 m above ground level, and a 70% overlap between 

flight lines (Table S1. appendices).  Trajectory correction was made in Applanix POSPac software using continuously 

operating reference station (CORS) observations from National Land Survey of Finland CORS network as the 

reference data. 

 155 

We compared the accuracy of the DTMs between different data processing methods, using 5 GCP (ground control 

point) as a reference. We tested Cloudstation's MinZ and Meanz methods and compared the lasR (v4.1.2; Roussel et 

al., 2020) and lidR packages (v0.13.0; Roussel, 2024) in R for DTM calculation. The models from the Cloudstation 

MinZ method best matched the accuracy of the 5 GCP plates and we chose the models produced by this method. 

However, it should be noted that the DTMs of May campaign in Sodankylä produced by Cloudstation have notably 160 

poorer accuracy compared to the DTMs produced by other methods. However, as the other campaign DTMs were the 

most accurate, we decided to use the same method for each site and campaign and accept the May inaccuracies. In 

addition, for each campaign, the data shows a DTM upscaling along the trajectory line borders, approx. 1-5 cm. The 

uplifts are presumably due to poorer georeferencing of points at the trajectory edges and presumably overlapping 

points from the two trajectories cause abnormal surfaces in DTMs. We tried to clean up the data from overlapping 165 

points, but the overall accuracy of the DTM was degraded, so we chose to accept the inaccuracies in the UAV flight 

trajectory edge regions.  
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2.2.3 Manual snow measurements 

Manual snow depth and density measurements were conducted on the same day as the UAV LiDAR flights and used 170 

as verification and validation data for modelled maps. Within 6 hours of each survey, snow course measurements were 

done through the study areas following the SYKE snow survey protocol (Kuusisto, 1984; Mustonen, 1965). Snow 

depth was measured every 50 m and density every 200 m along the snow course transect in Pallas (Fig. 1a). In 

Sodankylä, where the snow course is longer (4 km) the SWE was measured in 8 different sites along the snow course 

representing different terrain types (Fig. 1b). Snow measurements points were geolocated using RTK GPS Emlid 175 

RS2+ (Hungary) and Trimble GNSS system R12i (USA). 

2.2.4 Automatic daily snow depth measurements  

At least one snow depth sensor (Campbell Scientific SR50) can be found from each of the study sites. In Sodankylä, 

the study site is equipped with three daily snow depth ultrasonic sensors across different environments to capture the 

variability in snow cover (Fig. 1b). The sensors are operated by FMI and data is open access 180 

(https://litdb.fmi.fi/index.php). Sensors are in open peatland (N67°22.024', E26°39.070'), pine forest opening 

(N67°21.706', E26°38.031') and inside sparse pine forest (N67°21.699', E26°38.051'). Pallas has one daily snow depth 

ultrasonic sensor located in Kenttärova (Fig. 1a) also operated by FMI (https://en.ilmatieteenlaitos.fi/download-

observations).  The sensor is in the spruce forest in the upper part of the study area (N67°59.237', E24°14.579'). 

2.3 Data analysis   185 

2.3.1 LiDAR data processing 

LiDAR data from each campaign were pre-processed using CloudStation software. As part of this process, we 

performed strip alignment of the flight lines to generate an accurately georeferenced point cloud. To classify points 

belonging to the ground, we applied the following parameters: steepness (which reflects terrain variation) was set to 

0.2, minimum object height (the vertical threshold above which an object is not considered part of the ground) was 190 

set to 0.03 m, and point cloud thickness was set to 0.15 m. Following classification, we generated two types of DTMs: 

MinZ and MeanZ, where the Z value represents the minimum and mean elevation, respectively, for each pixel. Both 

DTMs were produced with a 10 cm spatial resolution. MinZ DTM showed better correspondence with the GCP plates 

(Sect. 2.2.1) and was used in the following analysis.  

 195 

Further DTM processing was conducted using ArcGis Pro 3.2.0. The snow depth rasters were generated by calculating 

the difference between two DTMs: one collected during the winter season and the other from a bare ground survey at 

the end of May/beginning of June. To standardize spatial resolution, the snow depth rasters were then resampled to 

1m resolution. Snow depth values falling outside a reasonable range (<-0,5m; > 2m) were set to null to remove extreme 

outliers, while minor negative values close to zero were corrected to zero (-0,5 – 0). Missing values were filled by 200 

calculating the median value from surrounding cells, using the neighborhood median of 5x5 cell grid. The data was 

clipped to area of interest (AOI), focusing the analysis on the buffer zone of 150m around the snow courses.  

 

The error metrics were calculated using the 5 ground control points around the study areas and comparing their 

accuracy to the derived DTMs following the suggestion of Rauhala et al. (2023). To estimate the uncertainty of 205 

generated DTMs, the difference between UAS DTMs and RTK measured GCP elevation (Δz) was calculated 

following Equation 1:  

𝛥𝑧𝑡 = 𝐷𝑆𝑀𝑠𝑡 − 𝑧𝐺𝐶𝑃𝑡,    (Eq 1) 
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where t is the date of survey, DTMS is the snow surface elevation from the UAS survey, and zGCP is the GCP elevation 210 

measured with RTK. 

 

When the snow depth rasters are derived from two DTMs, their precision was estimated following Equation 2: 

𝒖 =  √𝜎(Δ𝑧𝑡)² +  𝜎(Δ𝑧𝐺)²,    (Eq 2) 

where 𝜎(Δ𝑧𝑡  ) is the standard deviation for the difference between UAS DTM and RTK measured GCP elevation Δ𝑧 215 

for every winter campaign and 𝜎(Δ𝑧𝐺) is the standard deviation for the difference between UAS DTM and RTK 

measured GCP elevation Δ𝑧 for bare-ground campaign.  

To estimate the trueness of the calculated snow depth rasters, error propagation for mean error of snow-on and bare-

ground DTMs was calculated. It is calculated by finding the average of the differences between the UAS DTMs and 

the GCP elevations, following Equation 3: 220 

𝒎 =  𝜇(Δ𝑧𝑡) − 𝜇(Δ𝑧𝐺),     (Eq 3) 

where 𝜇(Δ𝑧𝑡) is the mean error for the difference between each snow-on campaign DTMs and GCPs, and 𝜇(Δ𝑧𝐺) is 

the mean error for the difference between bare-ground campaign DTMs and GCPs. 

2.3.2 Clustering of snow lidar data sets 

All analyses were performed using R Statistical Software (v.4.3.0, R Core Team, 2023). We used K-means clustering 225 

(Hartigan & Wong, 1979) to classify snow depth clusters for each study area. Clusters were identified from a smaller, 

random sample of the data. The detected clusters serve as a basis for the following random forest classification, which 

determines the clusters for the remaining study area. The classification results in a collection of two layers, first 

describing the probability (w) of each cell (ij) belonging to a specific cluster (c) wij and the other one describing which 

cluster the cell is the most likely to be associated with. Choosing the optimal number of clusters is a central step in K-230 

means clustering, and various indices can be used to guide this decision, and we analyzed the indices with the NbClust 

R package (v3.0.1; Charrad et al., 2014). In Sodankylä and Pallas the optimal number suggested by the indices varied 

from 1 to 8, but for simplicity and to be able to compare sites together we chose 3. 

2.3.3 Associating the snow depth clusters with snow depth measurement sensors 

The Δsnow model (Winkler et al., 2021) needs daily snow depth reference measurements to be able to upscale the 235 

snow depths for the entire study area.  As only a single daily snow depth sensor is available in both Pallas, we used 

interpolated snow depths from snow course data as reference values for the model. The snow depth measurements are 

conducted once a month in Sodankylä and Pallas snow courses (Fig. 1a, 1b), and during each of the drone campaigns 

(Fig. 2). 

 240 

Snow depth measurements from snow courses were linearly interpolated to estimate snow depths between manual 

observations. To improve the accuracy of these estimates, the interpolated values were adjusted using daily snow 

depth changed recorded by the in-situ snow depth sensors (Fig. 1a, 1b). At each snow course location, the interpolated 

snow depth was corrected by adding the daily change observed at the representative. Unlike Pallas, where one 

reference sensor is available, Sodankylä has multiple ultrasonic snow depth sensors distributed across different 245 

environments, allowing more representative corrections. To account for spatial variability in snow accumulation and 

melt, three reference sensors were selected: one in a mire, one in a forest, and one in a forest opening (Sect. 2.2.4).  

Each snow course measurement point is assigned to one of these environmental categories, ensuring that the most 
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appropriate sensor was used for correction. If the corrected snow depth estimate resulted in a negative value, it was 

set to zero. 250 

 

For the clustering model details and equations, we refer to Geissler et al. (2023). The cluster numbers are assigned so 

that the cluster with the highest mean snow depth gets the lowest number (cluster 1). The random forest model output 

wij, c is used to calculate probabilities of snow course measurement points (s) belonging to the clusters (ws,c) are 

assigned by normalizing, so that they sum to one in each cluster according to Equation 4: 255 

 

𝑤𝑠,𝑐̂ =  
𝑤𝑠,𝑐

∑
𝑠

(𝑤𝑠,𝑐)
     (Eq. 4) 

 

The synthetic daily snow depths for each cluster 𝑆𝐷𝑐 (𝑡) are calculated by multiplying the normalized probabilities by 

the snow depth values of the corresponding snow course measurements and summing them for each cluster according 260 

to Equation 5: 

 

𝑆𝐷𝑐 (𝑡)  = 𝑤𝑠,𝑐̂ × 𝑆𝐷𝑠(𝑡)   (Eq. 5) 

2.3.4  Creating daily SD and SWE maps 

The synthetic snow depth (SD) maps 𝑆𝐷 𝑖𝑗(𝑡) are generated by combining synthetic daily snow depth data (𝑆𝐷𝑐 (𝑡)) 265 

with cluster probabilities wij,c  and multiplying it with the time series data of that cluster (𝑆𝐷𝑐 (𝑡)) according to Equation 

6: 

 

𝑆𝐷 𝑖𝑗(𝑡)  =
∑
𝑐

 (𝑤𝑖𝑗,𝑐  × 𝑆𝐷𝑐(𝑡))   (Eq. 6) 

 270 

The synthetic daily snow depth data for clusters was converted into SWE time series using Δsnow model (Winkler et 

al., 2021). The model consists of four modules, namely new snow and overburden, dry compaction, drenching or 

scaling modules, and each module is activated depending on the change of snow depth between time steps. The model 

has 7 parameters to be calibrated, where Fontrodona-Bach et al. (2023)  suggested two of them to significantly related 

to the site-specific climate variables. These two key parameters are maximum density of a snow layer (ρmax) and new 275 

snow density (ρ0). Only Sodankylä has snow measurements allowing the determination of ρ0. In other sites the model 

was run with the values of ρ0 and ρmax provided by Fontrodona-Bach et al. (2023). The rest of the 7 parameters were 

kept as default on Winkler et al. (2021). More information on supportive information. 

The daily SWE maps 𝑆𝑊𝐸𝑖𝑗(𝑡) are calculated using the synthetic snow depth data 𝑆𝐷𝑐 (𝑡)  as an input for the model 

and then using the same protocol as for HS maps to upscale the daily SWE estimates for the entire study area using 280 

Equation 7: 

 

𝑆𝑊𝐸𝑖𝑗(𝑡) =
∑
𝑐

 (𝑊𝑖𝑗,𝑐  ×  𝑆𝑊𝐸𝑐(𝑡))  (Eq. 7) 

3 Results 

3.1 Accuracy of UAV based lidar for mapping snow depth in boreal and sub-arctic zone  285 

At all study sites, the snow depth measured from snow courses increases until March, after which it starts to decrease 

due to spring melting (Table 2). Variation of snow depths increases towards the melting season and in the April 

campaign and the last campaign in May shows stabilization in variability as the snow has already melted from most 

parts. 
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 290 

Table 2. Manual snow course measurements in different campaigns and sites on winter 2023-2024. 

Site January campaign March campaign April campaign May campaign 

Pallas 73.8 cm; SD 4.2 cm 98.2 cm; SD 6.3 cm 95.2 cm; SD 11.6 cm 46.1 cm; SD 12.3 cm 

Sodankylä 53.9 cm; SD 5.8 cm 62.2 cm; SD 9.4cm 46.3 cm; SD 19.5cm 22.4 cm; SD 6.5cm 

 

The uncertainty of the derived DTMs were studied by comparing GCP points to the UAS DTMs (Sect. 2.2.1). The 

difference between UAV LiDAR snow depth maps and RTK measured GCP (Eq. 1) resulted in varying accuracy 

between sites and campaigns and their RMSES can be seen in Table 3. Weather conditions as well as the accuracy of 295 

RTK signal might cause differences not directly related to the UAV LiDAR. 

 

Table 3. The RMSE of the differences between GCP plates and LiDAR UAV snow depths and the precicion and trueness 

of snow depth maps derived from snow depth maps in different campaigns and sites (Eq.1; Eq.2; Eq.3). 

Metrics Campaign Sodankylä (cm) Pallas (cm) 

RMSE (Eq. 1) 

January 3.1 6.8 

March 6.5 1.2 

April 5.3 3.8 

May 22.8 7.1 

June 2.4 5.1 

All 11.2 5.3 

Precision (Eq. 2) 

January 6.6 8.8 

March 4.5 4.7 

April 3.9 6.1 

May 20.8 6.3 

Mean 8.8 6.5 

Trueness (Eq. 3) 

January 2.7 3.3 

March 5.1 3.2 

April 0.9 3.3 

May 13.2 6.7 

Mean 5.3 4.1 

 300 

Table 3 summarizes also the precisions of snow depth maps from standard deviations for each site calculated by Eq. 

(2). The precision of the snow depth maps in Sodankylä is stable during the winter campaigns, performing the best in 

April (4.5 cm), but has an uncertainty of 20.8 cm in May. In Pallas the precision ranges from 4.7 cm in March to 8.8 

cm in January. The error propagation for mean error, meaning trueness of snow depth maps calculated by Eq. (3) are 

also concluded in Table 3. In Sodankylä the trueness is the best in April (0.9 cm), decreasing in May up to 13.2 cm, 305 

mostly caused by the computation of DTM with flooding of the mire areas. Pallas also has the highest trueness in the 

beginning of the winter with relatively stable accuracies through the winter ranging from 3.2 cm-3.3 cm in January-

April and decreasing in May to 6.7 cm.  

3.2 The characteristics of the snow depth clusters show similarities among sites 

The characteristics of different snow depth clusters and their associated snow conditions at each site were analyzed 310 

by grouping snow course measurements and environmental data according to their respective cluster classifications.  

3.2.1 Sodankylä snow depth and SWE clusters 

Cluster 1 covers 21% of the total Sodankylä area, typically located in forests or pine mires (Fig. 3). It has an average 

canopy height of 4.6m and is located typically less than a meter away from forests (Table 4). This cluster has the 
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highest average modelled snow depth and SWE through the winter. According to the model, snow depth peaks at 315 

14.3.2024 with 75 cm and SWE at 23.4.2024 with 164 mm (Table 4). The snow depth starts decreasing after the peak 

but increased again at the end of April due to heavy snowfall events, decreasing rapidly afterwards. From snow course 

measurements, the points classified to this cluster show their snow depth peak in 26.3.2024 with an average of 72.5 

cm snow depth (Fig. S1, supplementary material). None of the 7 SWE measurement points of the snow course were 

classified to this cluster (Fig. 3). 320 

 

 
Figure 3. Sodankylä site cluster and vegetation characteristics. Bounding boxes A, B and C are examples of different cluster 

zones in relation to their canopy height and land cover. 

Table 4. Cluster characteristics in relation to the entire study area of both sites 325 

Site Sodankylä Pallas 

Cluster 1 2 3 1 2 3 

Frequency % 21 45 34 32 42 26 

Mineral soil (forests) % 29 25 6 78 58 55 

Grove mire (korpi) % 3 2 1 2 4 2 

Pine mire (räme) % 49 19 5 17 18 9 

Open mire (avosuo) % 20 54 87 3 20 33 

CHM (m) mean 4.6 4.7 1.8 4.3 6.2 7.5 

Distance to forest (m) mean 1 3 14 1 2 7.5 

Max modelled snow depth (cm) 75 70 59 111 106 103 

Max modelled SWE (mm) 164 147 114 267 247 234 
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Cluster 2 is the most common, covering 45% of the total area, and is primarily located in the transition zone between 

forest and open areas, including forest gaps, mire edges, and forest-mire boundaries (Fig. 3). This cluster has a mean 

canopy height of 4.7 m and is on average 3 meters from cells classified as forests (Table 4). The modelled peak snow 

depth occurs 14.3.2024 (70 cm) and SWE at 23.4.2024 with 147 mm (Table 4). Snow course measurements that are 330 

classified as cluster 2 have their snow depth peaking in 15.3.2024 with an average of 67 cm, and SWE in 24.4.2024, 

with an average of 166 mm (Fig. S1, supplementary material). 

 

Cluster 3 predominantly occurs in open areas with low canopy height, with 87% of the area classified as open mire. 

This cluster consistently exhibits the lowest snow depths and SWE values compared to the others (Fig. S1, 335 

supplementary material). The highest modelled snow depth and SWE values for cluster 3 are at the same time as for 

other clusters, snow depth peaking at 14.3.2024 (59 cm) and 23.4.2024 (114 mm). The snow course snow depths and 

SWE from cluster 3 both peak 15.3.2024 with an average snow depth of 57 cm and SWE of 138 mm. 

3.2.2 Pallas snow depth and SWE clusters 

In Pallas, the three clusters derived from snow depth maps also show similar characteristics to those in Sodankylä 340 

(Table 4). The most common cluster 2 covers 42% of the study area, where cluster 1 covers 32% and cluster 3 is the 

smallest, covering 26% of the area. The snow depth in Pallas snow course began to decrease as early as late February 

across all clusters (Fig. S2, supplementary material). The decline was less pronounced in points classified as cluster 1 

compared to the other two clusters. However, the timing of peak SWE, marking the onset of snowmelt was later in 

the spring compared with snow depth and varied among the clusters.  345 

 

Cluster 1 is predominantly located in the forested areas, which accounts for 78% of the cluster, while the open areas 

cover only 3% (Table 4). The mean canopy height is approximately 4.3m and distance to the forest cells is less than 

1m, which is less than in other groups, suggesting smaller and denser forest types. Until January, modelled snow 

depths for cluster 1 follow similar snow depths with the other clusters, but after February they surpass those of other 350 

clusters and remain the highest until the end of the season (Fig. S2, supplementary material). Changes in the snow 

depths between February and March are small, with occasional fluctuations. The modelled snow depth of cluster 1 

peaks at 28.3.2024 (111 cm) and the SWE peaks in 10.5.2024 with SWE of 267 mm. Snow measurements from snow 

course show that points classified to this cluster have their peaks in snow depth in 22.2.2024 and 25.4.2024 with both 

having an average snow depth of 102 cm and SWE in 25.4.2024 with 265 mm.  355 

 

Cluster 2, identified as a transition zone, is typically located near forest edges, forest openings and small-scale open 

mire areas (Fig. 4). Forested areas cover 58% of the cluster, while open mire areas contribute 20%. The mean canopy 

height is approximately 6m with 2.2m distance to forest edges (Table 4). The snow depth patterns for this cluster align 

those of other clusters until late February, after which the snow depths in cluster 2 start to decrease. The modelled 360 

snow depth peaks in mid-March at 18.3.2024 with 106 cm, but also 17.2.2024 with 105 cm. The modelled SWE peaks 

later, on 28.4.204 with 247 mm and in 10.5.2024 with a SWE of 248 mm. The results are similar to the manual snow 

course measurements, where points classified to this cluster have their SD peak in 22.2.2024 (101 cm). However, 

snow course SWE peaks twice, having an average of 227 mm in 27.3.2024 and 233 mm in 25.4.2024. 

 365 

Cluster 3 covers 26% of the Pallas area and is marked by a mixture of forest (55%) and open mire (33%) environments 

(Fig. 4). It has the greatest distance to forest cells and the tallest mean canopy height of 7.5m (Table 4). This cluster 

is typically found in open mires or high canopy forests. Modelled snow depths in cluster 3 are initially the highest at 

the start of the season but exhibit a lower rate of increase compared to the other clusters after January and remain the 

lowest throughout the rest of the season (Fig. S2, supplementary material). The peak modelled snow depth, 103 cm, 370 

occurs in late February 17.2.2024, after which the snow depth steadily declines. The modelled SWE peak is at the 

same time as for cluster 2, at 28.4.2024 (237 mm). Snow course snow depth measurements are the highest at 22.2.2024 

with an average of 96 cm. SWE measurements from snow course within this cluster are limited, with only five 
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measurements taken during the melting period in late April and early May. During this period, SWE values are initially 

low but peak at 186 mm at 7.5.2024 (Fig. S2, supplementary material).  375 

 

Figure 4. Pallas site cluster and vegetation characteristics. Bounding boxes A, B and C are examples of different cluster 

zones in relation to their vegetation. 

3.2.4 UAV accuracy in comparison to clusters 

To evaluate the accuracy of LiDAR UAV snow depths by cluster, snow course SD measurements were assigned to 380 

their representative cluster. When comparing the LiDAR UAV SD maps and manual snow course SD measurements, 

the LiDAR maps consistently underestimate the snow course measurements in both Pallas and Sodankylä (Fig. 5a, 

5b). In Sodankylä, all snow course measurement campaigns show similar correspondence to the LiDAR snow depth 

maps and variations among clusters are similar, showing consistent agreement with snow course measurements (Fig. 

5a).  In Pallas the snow course measurements classified as cluster 1 correspond the best to the LiDAR snow depth 385 

maps, while the largest discrepancies are observed in cluster 3, typically located in wet mire areas (Fig. 5b).  The 

accuracy of UAV LiDAR maps decreases towards melting season, where especially in Pallas the SD estimates are on 

average up to -30 cm of the snow course measurements. 
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 390 
Figure 5. Difference 𝜟𝒛𝒕(cm) between the LiDAR UAV snow depths and snow course measurements by each campaign and 

representative cluster in (a) Sodankylä and (b) Pallas. 

Snow course measurements and the UAV LiDAR snow depth for each campaign were compared with the reference 

snow depth sensor measurements of the study area (Fig. 1; Fig. 2) to define the overall representativeness of the 

measurements and clusters. In Sodankylä, all forementioned follow similar patterns; clusters have similar mean snow 395 

depth as the sensors and are within the ranges of snow course measurements (Fig. 6a), except in May, when the snow 

course snow depths do not match UAV LiDAR nor the sensor snow depths. The highest snow depths are in forested 

clustr, and reference sensor located in the forest opening. In Pallas, the UAV LiDAR snow depth maps underestimate 

the snow height in relation to both snow course measurements and reference snow measurement (Fig. 6b). Cluster 1 

has the highest correspondence to the snow course and reference sensor compared to the areas classified as other 400 

clusters.   
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Figure 6. Reference sensor snow depths compared to UAV LiDAR snow depths by cluster in Sodankylä (a) and Pallas (b) 

in each campaign. 405 

3.3 Model validation  

3.3.1 Comparison of modelling results to snow course data 

The model creates daily snow depth and SWE estimates for the study site. These estimates were compared to the snow 

course measurements and UAV LiDAR snow depth maps to estimate their accuracy (Table 5). The snow depth 

predictions of modelled maps have overall accuracy of 8.0 cm in Sodankylä and 5.8 cm in Pallas compared to the 410 

manual snow course measurements (Table 5). The SWE values differ from snow course measurements in Pallas with 

RMSE of 35.6 mm and 33.1 mm in Sodankylä during all measurements on winter 2023-2024. The predicted SWE 

values of Sodankylä snow course follow the observed snow course SWE values (Fig. 7a). The model tends to slightly 

underestimate the SWE, particularly during the late season, but the median values of measurements fall within the 

model’s predictive range. Model performance is the highest in February, with RMSE of 12 mm (n=7). In contrast, the 415 

performance declines towards the end of the season with RMSE of 73 mm in May (n=4) as can be seen in table 7.1. 

 

In Pallas, the modelled SWE values are typically within the range of manual SWE measurement values (Fig. 7b). The 

model has an overall accuracy of 32 mm (Table 5), with its best performance observed early in the season, with RMSE 

of 6 mm in November (n=12) and 8 mm in December (n=12) as shown in table 5. The highest error, 59 mm (n=12), 420 

occurs during the onset of the rapid snowmelt in early May. Despite this, the modelled SWE values successfully 

capture the peak seasonal peak in April and May, consistent with the snow course measurements.  
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Figure 7. The modelled SWE values in comparison to the measured SWE values of the snow course in Sodankylä (a) and 

Pallas (b) 2023-2024. 425 

Table 5. Sodankylä and Pallas modelled SWE RMSE  

Sodankylä Pallas 

Date RMSE SD (cm) RMSE SWE (mm) Date RMSE SD (cm) RMSE SWE (mm) 

15.11.2023 6.3 (n=62) 15 (n=7) 2.11.2023 4.5 (n =46) 18 (n=12) 

15.12.2023 5.9 (n=62) 13 (n=7) 16.11.2023 4.1 (n=46) 6 (n=12) 

11.1.2024 4.6 (n=62) 16 (n=7) 1.12.2023 3.9 (n=46) 8 (n=12) 

16.2.2024 5.0 (n=62) 12 (n=7) 14.12.2023 3.5 (n=46) 39 (n=12) 

15.3.2024 6.4 (n=62) 30 (n=7) 9.1.2024 4.1 (n=45) 25 (n=12) 

26.3.2024 6.7 (n=62) 32 (n=7) 22.2.2024 4.7 (n=45) 26 (n=12) 

17.4.2024 9.2 (n=60) 37 (n=6) 5.3.2024 5.2 (n=46) 26 (n=12) 

24.4.2024 13.8 (n=62) 50 (n=6) 21.3.2024 5.5 (n=46) 24 (n=12) 

15.5.2024 9.7 (n=62) 73 (n=4) 27.3.2024 4.8 (n=46) 34 (n=11) 

Mean 8.0 (n=555) 33.1 (n=58) 18.4.2024 6.3 (n=45) 53 (n=12) 

   25.4.2024 6.4 (n=45) 26 (n=12) 

   4.5.2024 6.7 (n=46) 59 (n=12) 

   7.5.2024 6.3 (n=46) 67 (n=12) 

   15.5.2024 8.1 (n=38) 25 (n=11) 

   21.5.2024 9.3 (n=46) 29 (n=3) 

   Mean 5.8 (n=677) 35.6 (n=169) 
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Figure 8. Modelled SWE of the previous winters (a) 2023-2024, (b) 2022-2023 and (c) 2021-2022 at Pallas in comparison to 

the snow course SWE measurements 

The clustering and snow model (Section 2.3) provide daily maps of snow depth and SWE for each site. The defined 430 

clusters can be used for other years as well, if there is adequate snow depth data, and the spatial patterns of snow 

distribution are expected to be similar regardless of annual changes in snow depth and weather. Clusters defined by 

the snow distribution patterns of 2023-2024 were therefore used to see how well the model established based on 

clustering in winter 2023-2024 can reproduce previous years’ snow course measurements. SWE measurements from 

previous years are available for Pallas starting from 2021, although the number of measurements varies across years. 435 

The results show that SWE values from winter 2022-2023 snow course are aligned with the model estimates, also 

capturing the peak SWE in late April (Fig. 8b). The winter of 2021–2022 exhibits the greatest variability in snowline 

SWE measurements, with the model overestimating SWE for most of that winter. In other winters, the model typically 

underestimates SWE relative to snow course measurements. Additionally, the variance in SWE values across clusters 

is largest during the winter of 2021–2022, reflecting greater variability in snow depth along the snow course. However, 440 

the average of the SWE from snow course on winter 2021-2022 aligns with cluster 3, and model successfully captures 

the SWE peak in the beginning of May 2022. The model generally captures the snow course median SWE values from 

the manual measurements, and the peak SWE values and its timing in previous winters.  
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3.3.2. Spatial accuracy of the model is influenced by spring floods and snow wind distribution 

Figure 9 visualizes the modeled snow depths for the March campaign in Sodankylä, highlighting the influence of 445 

clustering on snow depth predictions. The modeled snow depths align with the observed snow course measurements, 

but the model struggles to accurately represent extreme high or low values of snow depth captured by the UAV 

LiDAR. The UAV LiDAR shows the spatial variability in snow depth between snow course measurement points, 

which are not captured during the snow course measurement survey. To be able to evaluate the model performance 

spatially, comparisons between modelled snow depth maps and UAV LiDAR maps were conducted for each of the 450 

campaigns. First the difference between UAV LiDAR SD map and the model SD output was derived (Fig. 10 & 11). 

The differences were then squared, averaged and the square root of the mean was calculated to obtain overall RMSE 

for the campaign and model.  

 

 455 

 
Figure 9. Transect from Sodankylä modelled snow depths, UAV LiDAR snow depths and snow course measurements and 

their representative clusters on 26.3.2024.  
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Figure 10 Sodankylä model performance from different LiDAR UAV campaigns. The values define the difference between 460 

LiDAR based snow depth maps and the modelled snow depth maps. 

In Sodankylä the analysis resulted RMSEs varying from 6.2 cm to 11.0cm (January: 11.0 cm; March 8.2 cm; April; 

8.8cm; May 6.2cm). The accuracy of the modeled snow depth maps is influenced more by the timing of the campaign 

than by the specific location (Fig. 10). For instance, in an open mire area located in the southeastern section of the 

snow course, the model's performance varies significantly, with difference ranging from 10–15 cm in March, 465 

decreasing to less than 5 cm in May (Fig. 10, dashed box). Similarly, in the spruce dominated forest situated in the 

southwestern part of the area, the highest accuracy is observed in April (difference < 5 cm), whereas in January, the 

model predictions exhibit a larger discrepancy, with errors ranging from 10–15 cm. 

 

In Pallas, the model has higher inaccuracies compared to Sodankylä, with RMSEs varying from 18.7 cm to 24.7 cm 470 

(January: 22.4 cm; March 24.7 cm; April 22.7 cm; and May 18.7 cm). The model therefore performs its best at the 

beginning and at the end of the season. Spatially the model performs the best particularly at the southern end of the 

snow course, characterized by homogeneous pine and mixed forest (Fig. 11). In contrast, the model has the highest 

errors in the broad Lompolonjänkä mire area in the northeast, where the snow is on top of flooding mire area, and on 

the northern slopes of the bordering drumlins, where wind-driven snow accumulation is common. In these areas, the 475 

model estimates over 30 cm difference to the UAV LiDAR map.  
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Figure 11 Pallas model performance from different LiDAR UAV campaigns. The values define the difference between UAV 

LiDAR snow depth maps and the model output. 

4 Discussion 480 

4.1. Snow and ice conditions impacted on UAV LiDAR accuracy 

UAV LiDAR mapping showed high accuracy in all study sites and conditions, with average RMSE of UAV LiDAR 

DTMs being 11.2 cm and 5.3 cm for Sodankylä and Pallas, respectively. These results align with previous studies, 

which have reported RMSE values from snow depth maps ranging from 9 to 17 cm  (Dharmadasa et al., 2022; Geissler 

et al., 2023; Harder et al., 2020; Jacobs et al., 2021). However, our larger uncertainty and lesser accuracy was noted 485 

in especially late melting period with flooding conditions that might be impacted by laser beams reflection from water 

bodies.   

 

The trueness of the snow depth maps derived from DTM maps vary between 0.9-13 cm and typically are 4-6 cm in 

all sites and RMSEs of individual DTMs vary between 1 and 7 cm (excluding outlier Sodankylä May 22.1 cm). The 490 

precisions here are based on the 5 GCP measurements as suggested by Dharmadasa et al. (2022). Pallas has the most 

stable conditions and Sodankylä the actual lowest bias in April (0.9 cm). The accuracy of the GCP measurement itself 

can affect the accuracy estimates. For example, one measurement in Sodankylä May has large difference to DTM, 

which decreases the overall accuracy of the site. The point was not excluded from the calculations as the error can 

also be due to the DTM calculation errors from flooding areas. The accuracy of UAV LiDAR snow depth mapping is 495 

dependent on several factors, that can be divided into boresight errors, navigational errors, terrain- and vegetation-

based errors, and post-processing-errors (Deems et al., 2013; Pilarska et al., 2016). For example, fallen tree trunks, 

very dense undergrowth or flooded marshes can pose challenges to point cloud classification and affect the output 

DTM quality (Deems et al., 2013; Evans & Hudak, 2007). 
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 500 

The best accuracy of snow depth maps (0.9 cm) of all sites and campaigns was calculated from April data from 

Sodankylä. Two previous days before the flight campaign on 24.4.2024 approximately 10 cm of new snow had fallen 

in the area, which helps to smooth the snow surface and cover previously melted or frozen areas under the snow, 

which could otherwise affect the laser's reflection or the accuracy of the terrain model. On contrary, the trueness of 

snow depth maps in all sites is the lowest in May (Table 3). Our findings highlighted increased measurement 505 

inaccuracies during that period, as most of the snow had already melted and the large areas were covered with slush 

and smooth water surfaces, which affects the laser beam reflection. The phenomenon can be seen in especially in 

Sodankylä, which has the largest, typically flooding, mire areas among sites. Up to our knowledge there is no 

systematical review on wet snow affecting laser beams. The results are similar with Rauhala et al. (2023), where the 

poorest accuracy of SfM method based DTMs were collected during the late melting period in flooding areas. This is 510 

due to the manual snow course measurements, where these flooding points are marked as having zero snow depth and 

DTMs still showing snow in these areas. Vegetation type, such as dense coniferous forests, are known to decrease the 

accuracy of different UAV methods of snow depth mapping (i.e Dharmadasa et al., 2022; Rauhala et al., 2023), as 

coniferous canopy prevents ground returns. If we expect the cluster 1 to present forested regions and cluster 3 to 

present open areas with low vegetation and compare the snow depth map accuracies to snow course measurements, 515 

we cannot distinguish similar phenomena in Sodankylä or Pallas (Fig. 5). On both sites, the best correspondence 

between snow course measurements and UAV LiDAR maps are in cluster 2, in forest openings. In contrast, especially 

in Pallas, the biggest disparities occurring in cluster 3. This can be due to snow course measurement poles lifting from 

the ground especially in wet areas where ground freezing and thawing move the pole during the years.  

 520 

Broxton & van Leeuwen (2020) recommended the SfM method for snow depth monitoring under certain conditions, 

such as in gently sloping terrains and areas without dense forest cover. The UAV LiDAR method was selected over 

SfM method due to challenges identified, especially during the low lighting conditions and dense forest canopy cover 

(Rauhala et al., 2023; Revuelto et al., 2021) . With advancements in SfM camera technology, the SfM method could 

complement LiDAR monitoring, particularly in relatively flat regions like Sodankylä and Pallas. Nevertheless, 525 

challenges remain for both methods in large mire areas. While the SfM struggles with surface homogeneity, LiDAR 

faces accuracy issues in detecting bare ground under flooded, uneven and wet surfaces. Additionally, manual snow 

depth measurements are also less accurate due to ice and water layers on the ground. 

4.2 Site characteristics explaining the different snow depth clusters  

Site characteristics impacted notably to snow depth clustering in our boreal and sub-arctic sites. Especially, we noted 530 

that canopy cover, open peatlands and transition zones with wind shelter had a clear and similar influence on clustering 

in both sites. Additionally, we noted that the clusters have similar snow dynamics in both sites. The number of clusters 

has a major impact on the success of the classification, and the ability to identify specific features of each cluster 

depends on the quality of the clustering process. 

 535 

The study employed three different categories for clustering, as initial tests demonstrated their suitability for 

representing different snow patterns in study areas. Equal number of clusters also provide a basis for site 

comparability. Our analysis resulted snow depth classification into forests with different trunk heights (cluster 1), 

transition zone between forests and open areas, including forest edges and gaps (cluster 2), and open areas (cluster 3) 

mainly peatlands. The results are consistent with those of Mazzotti et al. (2023) who noted that snow accumulation 540 

patterns can be classified in three groups based on the relationship between canopy structure and ablation rate. 

 

In forested areas, distinguishing between clusters 1 and 2 remains challenging due to their similar site characteristics 

(Tables 5 & 6). Forested areas present challenges for clustering because of varying snow height and dynamics 

influenced by canopy cover and trunk size (L.-J. Meriö et al., 2023). Forest gaps in the coniferous forests are known 545 

to create clear and distinct variations in snow depth within the forests, and also SWE varies up to three times more in 
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unevenly distributed forests compared to evenly distributed forests (Woods et al., 2006). For this reason, forested areas 

contain both clusters 1 and 2 in both sites. The cluster 1 receives the most snow and has the highest SWE values, 

especially during the late winter (Fig. 7a; 7b).  Lundquist et al. (2013) concluded that this is the typical situation in 

cold climates, where snow lasts longer in forests than in forest openings. In both of our sites, snowmelt starts the latest 550 

and snow cover lasts the longest in cluster 1. The forested areas in Sodankylä and Pallas are spruce dominated, where 

the canopy shades the ground from the sun radiation, reduces wind effects and traps snow, though also limits snowfall 

reaching the ground. In this cluster, we expect the snow accumulation to follow canopy structure throughout the season 

and the ablation to be too weak or constant to change it, as defined by Mazzotti et al. (2023). 

 555 

Cluster 2 is the most common cluster on both sites (Tables 5 & 6), likely since it can be founded in both forested and 

open environments. While the snow depth trends across cluster 1 and cluster 2 are similar, cluster 2 experiences an 

earlier start of snowmelt in spring compared to forested cluster 1 (Fig. 7a; 7b). This indicates more short-wave solar 

radiation exposure compared to cluster 1, where SWE peaks at the end of April before the melting begins. Cluster 2 

characteristics correspond to previous studies, by Koutantou et al. (2022) and Meriö et al. (2023), where canopy 560 

structure influences snow accumulation, but in ablation subsequently disrupts these patterns, resulting in earlier timing 

of snow loss. This phenomenon can also be seen in the modeling outputs from the previous two winters in Pallas (Fig. 

8), especially in winter 2022-23, when snowmelt in cluster 2 started simultaneously with cluster 3. These 

characteristics are seen in both sites and support the location of the cluster 2 to be in transition zones between open 

and forested areas.  565 

 

Open areas are subject to wind redistribution and prolonged solar exposure resulting in lower and smoother snow 

depth patterns, that correspond to the results of cluster 3. In cluster 3, snow depth starts decreasing notably earlier than 

other clusters, in February 2024, suggesting faster melting due to both higher solar radiation and flooding. In the 

flooding mire areas, melting waters from below also accelerate snowmelt. Both snow depth and SWE values are lower 570 

in this cluster in comparison to the other clusters, corresponding to the results from L.-J. Meriö et al. (2023). An 

interesting aspect of the classification is the differentiation between mires Lompolonjänkä (box A; Fig. 4) and Välisuo 

(box B; Fig. 4). Välisuo mire, classified to cluster 2, is more sheltered, surrounded by forests and is located at a higher 

altitude than the Lompolonjänkä mire, classified as cluster 3. Välisuo is drier and partly artifially drained, while 

Lompolonjänkä is larger drained by a small natural stream typically flooding in spring (Marttila et al., 2021). 575 

 

In a recent study from Pallas site by L.-J. Meriö et al. (2023), the variations in snow depth were partially explained by 

canopy interception, longwave radiation emitted by trees, and wind-driven redistribution, which contributed to snow 

deposition along forest edges in both forested and peatland environments. The snow depth was higher within dense 

canopy, with the greatest accumulation observed in coniferous forest areas, followed by mixed forests, transitional 580 

forest/shrubland, and open peatlands. In both Sodankylä and Pallas the dominant winter wind direction is from the 

south, which leads to snow accumulation in forest canopy and their leeward side, where typically the highest snow 

depths are measured, corresponding to the results from Dharmadasa et al. (2023). In Pallas this results in snow 

accumulating particularly behind the drumlins north of the mire Lompolonjänkä (Fig. 4 Box A). This is also reflected 

in the accuracy of the model in these areas - the three clusters may not be sufficient to account for the particularly high 585 

snow depths of the northern sheltered slopes (Fig. 11).  In comparison, snow dynamics in Sodankylä are influenced 

by vegetation rather than by topographical variations, as the area itself is flat with elevation differences of less than 

two meters.  Forest structure is the main driver of snow accumulation, but shortwave radiation can disrupt these 

patterns, especially on south-facing slopes where there is expected more early-season ablation (Mazzotti et al., 2023). 

Weather further affects accumulation and ablation processes, leading to interannual variations in snow distribution, 590 

explaining why the relationship between snow distribution and canopy structure varies by location and year. 

 

K-means clustering is widely used in many applications for partition datasets but is known to have problems associated 

with centroid initialization, handling outliers and dealing with various data types (Ahmed et al., 2020; Morissette & 

Chartier, 2013). While more clusters might be able to capture finer details, such as directional classes (Mazzotti et al., 595 
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2019), the current classification to three groups corresponds to non-directional categories. These results align with 

previous findings that emphasize the importance of canopy structure in addition to topography and weather conditions 

on snow dynamics (Dharmadasa et al., 2023; Mazzotti et al., 2023). For instance, Geissler et al (2023) classified their 

Alpine study area into four classes, further subdividing the open class into shaded and exposed subclasses. Although 

using more than three clusters could potentially improve the finer scale spatial accuracy, the number of clusters is 600 

always a question of the data used and left to the user to decide, as noted also in the study of Geissler et al. (2023). 

Based on our observations, we conclude that the number of clusters is dependent on the landscape characteristics of 

the site and the purpose of the model output. If the interest is to investigate the differences between snow dynamics in 

different environments, we recommend increasing the cluster number to include also shaded, exposed and potentially 

different forest types to capture local variability (Currier & Lundquist, 2018; Fujihara et al., 2017; Mazzotti et al., 605 

2020, 2023; Trujillo et al., 2007). However, especially in topographically homogeneous regions such as Sodankylä, 

less classes might be enough to represent the overall snow distribution with reasonable accuracy. The accuracy of the 

model output together with the homogeneous landscape supports the use of three clusters. In areas with a larger variety 

of terrain types, such as diverse slopes and orientations, more categories, 4 to 5, could be justified. 

4.3 Lidar-based snow clustering and modeling produces SWE estimates comparable to snow surveys 610 

The clustering derived from UAV LiDAR snow depth maps, combined with the Δsnow model, produced snow depth 

and SWE estimates with RMSEs of 8 cm and 33.1 mm in Sodankylä, and 5.8 cm and 35.6 mm in Pallas. The model 

can reproduce the onset of snowmelt and peak SWE and, after one season of drone surveys, needs only daily snow 

depth measurements as input. The localization of model parameters, especially ρmax and ρ0, and the amount of daily 

snow depth reference data for the identified clusters, improved the results.  615 

 

The results are consistent with a similar study by Geissler et al. (2023), where the model errors were 8 cm for snow 

depth and 35 mm for SWE in comparison to the manual snow measurements. Winkler et al. (2021), the creators of the 

presented Δsnow model, produced a SWE RMSE value for their entire validation data set of about 30.8 mm, which is 

consistent with other similar models and the results obtained in this study. Multilayered thermodynamic one-620 

dimensional models for SWE estimation, such as SNOWPACK, CROCUS and SNTHERM, obtained more accurate 

results in the Langlois et al. (2009) study with an RMSE of 12.5-14.5 mm, but these models also require atmospheric 

variables that are not ubiquitously available. Studies with CROCUS also have produced SWE estimates RMSE values 

in the same order as this study (Vionnet et al., 2012) with an accuracy of 39.7 mm. Mortimer et al. (2020) studied the 

long-term gridded SWE products and compared their results to snow course measurements. None of the 9 tested 625 

products was significantly better than others, rather multiproduct combination provided the most accurate results. The 

lowest RMSE over Finland was 33 mm produced by ERA5. Thus, depending on the region and winter climatic 

conditions, there may be variability in the modelling results and our UAV results are in typical measurement estimate 

ranges. 

 630 

The RMSE of the modelled snow depths in comparison to manual snow course measurements (Table 5) in Sodankylä 

are higher than in Pallas, likely due to several factors. In large mire areas, such as those found in Sodankylä, the 

formation of ice layer at the bottom of the snowpack may compromise the accuracy of snow course measurements 

(Stuefer et al., 2020). Additionally, the accuracy of snow depth maps in Sodankylä was reduced when parts of the 

areas were flooded in May (Table 3). Also, normalizing snow depths when generating daily estimates for clusters 635 

ensures internal consistency but reduces local variability, leading to an underestimation of extreme values. Even 

though the RMSE of the modeled snow depths relative to snow course measurements in Pallas is lower than in 

Sodankylä, the RMSEs calculated for the entire study area are higher in Pallas. Specifically, RMSE values range from 

18.7 to 24.7 cm in Pallas, compared to 6.2 to 11.0 cm in Sodankylä. One contributing factor to the higher RMSE in 

Pallas is the accuracy of the snow course measurements (Fig. 5). The errors arise from the use of interpolated snow 640 

course data as model input. These interpolations overestimate actual snow depths in Pallas (Fig. 6), introducing a 

systematic bias. This overestimation of snow course measurements also partially explains the higher RMSE of the 
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Pallas SWE model compared to Sodankylä, even though the modeled snow depth estimates for snow course were 

more accurate (Table 5). In contrast, UAV LiDAR-derived snow depths for the entire Sodankylä region closely align 

with snow course measurements (Fig. 6), indicating better agreement between manual measurements and broader 645 

regional snow depth estimates in this area. 

 

Our model can detect SWE peaks in some of the clusters (Fig. S1; S2, supplementary material). In Sodankylä, the 

SWE peak for cluster 2 aligns with the snow course measurements recorded at the dates between 22.4 and 24.4.2024. 

The model estimates SWE for cluster 3 to range between 107 and 114 mm from 14.3 to 23.4.2024 and snow course 650 

data of the cluster 3 indicates that SWE reaches its peak in mid-March before gradually decreasing until the end of 

April, demonstrating good agreement with the model estimates. However, while the timing of the peak is well 

captured, a slight discrepancy remains in its magnitude. Due to the limited number of snow course measurements 

classified within cluster 1, detecting meaningful correlations for this cluster was not possible. In Pallas, the model 

estimates SWE peaks for cluster 1 and 2 on 10.5.2024, while for cluster 33, the peak is predicted to occur earlier, on 655 

28.4.2024. However, a slight temporal lag is observed as snow course measurements indicate that for clusters 1 and 2 

the SWE peaks on 25.4.2024. For cluster 3, the discrepancy is more pronounced, with observed SWE peaking already 

at the end of March. The results show regional differences in SWE accumulation and melt dynamics, with the model 

capturing general trends but showing slight timing offsets, particularly in Pallas.  

 660 

The model was validated at the Pallas site to assess its performance under different winter conditions from 2021 to 

2023 from which no data was used in developing the model (Fig. 8). The results indicate that the model successfully 

captures both the peak SWE and its timing, despite variations in winter conditions between different years. During the 

2021–2022 winter, the variance in both snow course SWE and modeled SWE is notably higher compared to the other 

winters. This increased variability is partly due to the fluctuating snow depths that season due to both mid-winter melt 665 

events and heavy snowfall events.   

 

Several studies are predicting increase in mixed and liquid precipitation in winter months in Finland and, particularly 

in northern parts, increased solid precipitation and earlier springs (Luomaranta et al., 2019; Ruosteenoja et al., 2020). 

Rain-on-snow (RoS) events are expected to increase in the future for the northern Norway region during spring and 670 

summer (Mooney & Li, 2021; Pall et al., 2019), potentially leading to an increase of such events also in northern 

Finland. Such events increase the liquid water content of the snowpack, leading to rapid saturation and accelerated 

snowmelt, reducing snow depth faster than natural snowmelt processes (Yang et al., 2023). Even though Geissler et 

al. (2023) noticed the model’s limited capacity of mapping quick changes during RoS events, the SWE estimations of 

this model add value to operational snow course measurements by enabling continuous monitoring of changes between 675 

monthly observations. This capability is especially valuable for capturing rapid changes during events such as snow 

depth variations caused by melting, snowfall, or RoS, where these dynamics can be scaled across the entire study area 

rather than relying on data from a single reference sensor. By integrating daily estimates from local snow depth sensors 

with snow course data and clusters, our approach enhances event coverage in modeling. The model’s ability to capture 

peak snow depth and melt-out dates in real time, provided that reference snow depth sensors transmit data online, 680 

offers essential data for hydrological observation networks and improves the spatiotemporal resolution of snow course 

measurements.  

4.4 Practical aspects and suggestions for future studies  

Combining observation-based clustering with intensive field data can improve the spatiotemporal coverage of the 

snow course measurements and give important insights into the site-specific snow cover dynamics. Our results output 685 

is encouraging for other sites to test the approach. This study applied intensive UAV LiDAR campaigns to capture 

fine detailed information on snowpack variability also in forested areas, which are known to cause errors in UAV SfM 

methodology (Broxton & van Leeuwen, 2020) and poor lighting conditions and dense forest canopy cover (Rauhala 

et al., 2023; Revuelto et al., 2021). Regardless of the sensor used, the impact of winter conditions on the battery life 
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of the drone should be considered.  The batteries of the DJI Matrcie 300 RTK had to be replaced up to five times 690 

during the flight campaign, especially in cold weather. Occasionally RTK coverage can also become a limiting factor 

in remote areas, for example in Pallas in January, due to the temporary unavailability of the VRS signal. However, 

especially in sparsely vegetated areas, the UAV SfM method could offer a more cost-efficient method for producing 

3D data of snow dynamics and support the output of more expensive UAV LiDAR. UAV data acquisition with LiDAR 

or SfM can also further support the spatiotemporal resolution of remote sensing products, as their usage in local scale 695 

snow research is still limited due to spatial and temporal coverage issues (Muhuri et al., 2021; Stillinger et al., 2023; 

Tsang et al., 2022). As noted by Geissler et al. (2023), this method combining observations and machine learning can 

improve spatial representation of hyper-resolution models (Mazzotti et al., 2021) or advance refining sub-grid 

variability in larger-scale models (Currier & Lundquist, 2018). 

 700 

Mazzotti et al. (2023) indicated that the snow distribution patterns found at a specific location may not be consistent 

from year to year, especially in changing weather conditions. The snow distribution patterns are site-specific due to 

vegetational and topographical differences, and some clusters might have different responses to different weather 

conditions. Especially winters with abnormal snowfall cause differences in snow extents and snow depth variability 

(Pflug & Lundquist, 2020). A follow-up year with different weather conditions could enhance and verify the 705 

representativeness of the clusters and provide insights into interannual variability, as local snow distribution patterns 

show recurrent similarities (Sturm & Wagner, 2010).   

 

Improvements in the input data quality can enhance the accuracy of the model, but the model also seems robust, for 

example for Pallas site snow course measurement errors (Table 5). We would recommend a more comprehensive 710 

network of snow depth sensors that could improve daily snow depth forecasts based on snow course measurements, 

particularly in Pallas, where only limited data from Kenttärova snow depth sensor is available. At least one reference 

sensor in each land cover type, corresponding to a cluster, would improve the estimates. As fresh snow density and 

maximum snow density are among the most important parameters of the model (Fontrodona-Bach et al., 2023), the 

model parameters should be localized for each site, rather than relying on estimates based on literature. Additionally, 715 

as the greatest inaccuracies in snow course measurements at Pallas were observed in mire areas, it is important to 

acknowledge that these regions are prone to larger errors in both manual and UAV-based snow depth data collection. 

Beyond the influence of snow-forest interactions, our results also emphasize the need to study snow accumulation and 

melt processes in extensive peatland areas, which are particularly prevalent in the Arctic boreal zone. 

5. Conclusions 720 

This work combines emerging methods in close-range remote sensing and machine learning for high spatial and 

temporal resolution estimates of snow depth and snow water equivalent. The work is an important new application of 

such methodology in the vast, yet relatively underexplored, boreal and sub-arctic snow regimes.  The study used an 

intensive field campaign at two well-established snow and hydrology research sites, Sodankylä and Pallas in Finnish 

Lapland. The different sites represent different conditions both in terms of topography and there were also significant 725 

differences in weather conditions between the different campaigns. The snow depth maps from different areas and in 

different winter conditions are the first from these study areas at a centimeter scale of accuracy and allow an evaluation 

of the method in relation to other snow depth and SWE products.  

 

The used clustering approach together with the Δsnow model has potential for expanding the current operational snow 730 

monitoring network to different sites. The resulting SWE and snow depth maps are possible to produce in areas with 

snow depth sensors in different terrain types, or a regularly measured snow course with at least one snow depth sensor 

measuring daily. While the accuracy of the snow course measurements must be considered, the existing snow courses 

provide a good basis for similar approaches for local scale SWE and snow depth mapping in other boreal sites too. 

Even though clusters formed here are based on one winter and are site specific, we showed how they translate well to 735 
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different winters with different snow amounts at the sites. Founded on the well-established consistency of local-scale 

snow distribution between years, new technology applied in this research enables cost-effective solutions for SWE 

monitoring after one winter of UAV LiDAR surveys. Our work extends the previous applications of similar methods 

successfully to boreal taiga snow, where forest greatly complicates any snow monitoring, remote sensing and 

modeling.  740 

 

With climate change leading to increasingly variable weather and more frequent rain-on-snow events, this 

methodology provides valuable tools for estimating rapid changes in snow depth and SWE at both local and catchment 

scales. Such spatially and temporally refined estimates of the snowpack condition are needed for catchment scale 

snow model validation and calibration, as well as to improve resource planning and prediction. 745 
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